Decentralized Unsupervised Learning of Visual Representations

计算机科学 匹配(统计) 特征学习 特征(语言学) 机器学习 人工智能 独立同分布随机变量 协作学习 无监督学习 半监督学习 特征向量 学习迁移 语言学 统计 哲学 知识管理 数学 随机变量
作者
Yawen Wu,Zhepeng Wang,Dewen Zeng,Meng Li,Yiyu Shi,Jingtong Hu
标识
DOI:10.24963/ijcai.2022/323
摘要

Collaborative learning enables distributed clients to learn a shared model for prediction while keeping the training data local on each client. However, existing collaborative learning methods require fully-labeled data for training, which is inconvenient or sometimes infeasible to obtain due to the high labeling cost and the requirement of expertise. The lack of labels makes collaborative learning impractical in many realistic settings. Self-supervised learning can address this challenge by learning from unlabeled data. Contrastive learning (CL), a self-supervised learning approach, can effectively learn visual representations from unlabeled image data. However, the distributed data collected on clients are usually not independent and identically distributed (non-IID) among clients, and each client may only have few classes of data, which degrades the performance of CL and learned representations. To tackle this problem, we propose a collaborative contrastive learning framework consisting of two approaches: feature fusion and neighborhood matching, by which a unified feature space among clients is learned for better data representations. Feature fusion provides remote features as accurate contrastive information to each client for better local learning. Neighborhood matching further aligns each client’s local features to the remote features such that well-clustered features among clients can be learned. Extensive experiments show the effectiveness of the proposed framework. It outperforms other methods by 11% on IID data and matches the performance of centralized learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邱寒烟aa完成签到 ,获得积分0
刚刚
鳄鱼队长完成签到,获得积分10
1秒前
123完成签到 ,获得积分10
10秒前
11秒前
天天开心完成签到 ,获得积分10
12秒前
111完成签到 ,获得积分10
18秒前
sun_lin完成签到 ,获得积分10
19秒前
22秒前
椒盐皮皮虾完成签到 ,获得积分10
22秒前
jfw完成签到 ,获得积分10
23秒前
leo发布了新的文献求助10
27秒前
qingqingiqng完成签到,获得积分10
27秒前
28秒前
石子完成签到 ,获得积分10
29秒前
cdercder应助科研通管家采纳,获得10
29秒前
cdercder应助科研通管家采纳,获得10
30秒前
可耐的寒松完成签到,获得积分10
30秒前
科研人发布了新的文献求助10
30秒前
逢场作戱__完成签到 ,获得积分10
39秒前
mark33442完成签到,获得积分10
43秒前
懵懂的仙人掌完成签到,获得积分10
47秒前
mimosal完成签到,获得积分0
1分钟前
葛儿完成签到 ,获得积分10
1分钟前
老张完成签到 ,获得积分10
1分钟前
d00007发布了新的文献求助10
1分钟前
1分钟前
与离完成签到 ,获得积分10
1分钟前
烁果累累完成签到 ,获得积分10
1分钟前
monthli完成签到,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
Dash完成签到 ,获得积分10
1分钟前
1分钟前
d00007完成签到,获得积分20
1分钟前
1分钟前
strama完成签到,获得积分10
1分钟前
merry6669完成签到 ,获得积分10
1分钟前
HH1202完成签到 ,获得积分10
1分钟前
mimosal发布了新的文献求助30
1分钟前
1分钟前
zokor完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353