Ultrafast optical spectroscopy of high-temperature superconductors

超短脉冲 光谱学 高温超导 材料科学 超导电性 光电子学 凝聚态物理 物理 光学 激光器 量子力学
作者
Qiong Wu,Yichao Tian,Yanling Wu,Jimin Zhao
出处
期刊:Kexue tongbao [Science China Press]
卷期号:62 (34): 3995-4009 被引量:2
标识
DOI:10.1360/n972017-00816
摘要

The mechanism of high-temperature superconductivity is still an unsolved mystery in physics, and it is the ″pearl in the crown″ of condensed matter physics. Among the numerous optical methods investigating superconductors, ultrafast spectroscopy is one of the most exquisite methods and the most powerful control means. It can interact with superconductors in all the charge, lattice, spin and orbital degrees of freedom. It can probe the excited state of superconductors. It can uniquely realize investigations of the ultrafast processes of quasiparticles, the coherence control of lattices, electron-phonon coupling strength, and the interface superconductivity. Here we briefly review the ultrafast optical spectroscopy (especially the ultrafast dynamics) investigations of high temperature superconductors, with concrete examples. Particularly, we demonstrate the unique virtues of this experimental method in the observation and realization of quasiparticle excited states, bosonic coherent states, laser-induced superconductivity, and interface superconductivity. We give the prospect of this area at the end. The complexity, profundity and serendipity of superconductivity quite much root in its bridging between both fermions and bosons in the condensed matters—a solid universe. Ultrafast spectroscopy can probe both the electrons and bosonic collective elementary excitations, thus making it feasible for revealing the superconducting mechanism. The time-resolved measurements provide direct evidences of the superconducting Bose-Einstein condensate and clues to distinguish it from the pseudogaps, charge density waves, spin density waves, etc. Delicate ultrafast spectroscopy investigations can also yield testifying information on the gap symmetry, including whether there is a nodal line in the system. The electron-phonon coupling constant can be obtained by directly observing the quasiparticle relaxation, which usually occurs at picosecond scales and marks the rate of energy transferring among carriers and phonons—a direct reflection of electron-coupling strength. The unique way of generating and detection coherent phonons in a solid adds another way of looking into the lattice behavior in a superconductor—if it is phonon glue, which mode plays the major role? The aforementioned methods have been used to study all the cuprates, iron-based superconductors, and interface single-layer superconductors. Furthermore, ultrafast laser pulse can act as a natural controlling tool. It is known photo-doping can be more efficient than chemical doping in some situations, but more dramatically, ultrafast light pulses can induce superconducting phenomenon in a non-superconducting system with even room temperature T c. Since the superconducting feature occurs and evolves in picoseconds, this transient superconductivity can only be observed using ultrafast spectroscopy. This excited state superconductivity is a concrete example of the importance of excited state in superconductivity investigation. The accessibility for ultrafast spectroscopy to excited states (non-equilibrium quantum states) making it an exceptionally feasible experimental means among the all in such investigations. Currently, ultrafast spectroscopy is extending to the THz and mid-IR range to resonantly probe the narrow gaps or phonon excitation, to the X-ray range (RIXS) to achieve momentum-resolved information of bosonic excitations, to adding angle-resolved photoemission spectroscopy to access the momentum-resolved electronic features, to adding Transmission Electron Microscopy (TEM), Scanning Tunnel Microscope (STM) or Scanning Nearfield Optical Microscope (SNOM) for spatially-resolved properties, etc. We foresee that ultrafast spectroscopy of superconductors is going to be mature area in 30 years. During this period, it is going to proceed in a foreseeable way marked by the aforementioned science problems and physics techniques, and in an un-foreseeable way marked by novel exciting results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cain完成签到,获得积分10
4秒前
想不想发布了新的文献求助10
4秒前
9秒前
丘比特应助不是山谷采纳,获得10
10秒前
Mhj13810完成签到,获得积分10
11秒前
13秒前
liujingyi发布了新的文献求助10
16秒前
19秒前
Mhj13810发布了新的文献求助10
20秒前
liujingyi完成签到,获得积分10
22秒前
双儿发布了新的文献求助10
24秒前
默默鞋子完成签到 ,获得积分10
24秒前
Ssmall完成签到,获得积分10
26秒前
39秒前
完美世界应助guozizi采纳,获得50
44秒前
北海发布了新的文献求助10
46秒前
zyj完成签到,获得积分10
51秒前
51秒前
TGU2331161488完成签到,获得积分10
53秒前
53秒前
夕立完成签到,获得积分10
57秒前
小猪佩奇发布了新的文献求助10
58秒前
NexusExplorer应助默默鞋子采纳,获得10
1分钟前
刘丰发布了新的文献求助10
1分钟前
小猪佩奇完成签到,获得积分10
1分钟前
北风完成签到 ,获得积分10
1分钟前
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助老黑采纳,获得10
1分钟前
Masongyang完成签到 ,获得积分20
1分钟前
Marshall完成签到 ,获得积分10
1分钟前
1分钟前
Behappy完成签到 ,获得积分10
1分钟前
阿菜完成签到,获得积分10
1分钟前
qlandt完成签到 ,获得积分10
1分钟前
王雄发完成签到 ,获得积分20
1分钟前
CipherSage应助sun采纳,获得10
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781926
求助须知:如何正确求助?哪些是违规求助? 3327474
关于积分的说明 10231495
捐赠科研通 3042382
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799461
科研通“疑难数据库(出版商)”最低求助积分说明 758822