Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries

卤化物 电化学 电解质 快离子导体 材料科学 氧化物 无机化学 化学工程 化学 纳米技术 电极 冶金 物理化学 工程类
作者
Tuncay Koç,Maxime Hallot,Elisa Quemin,Benjamin Hennequart,Romain Dugas,Artem M. Abakumov,Christophe Lethien,Jean‐Marie Tarascon
出处
期刊:ACS energy letters [American Chemical Society]
卷期号:7 (9): 2979-2987 被引量:56
标识
DOI:10.1021/acsenergylett.2c01668
摘要

All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or LixIny negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawang完成签到,获得积分10
4秒前
CipherSage应助tdtk采纳,获得10
4秒前
细水de无声完成签到,获得积分10
5秒前
5秒前
haizz完成签到 ,获得积分10
8秒前
kingwill完成签到,获得积分0
9秒前
慕青应助岁月轮回采纳,获得10
9秒前
9秒前
Azyyyy发布了新的文献求助10
11秒前
zaman完成签到,获得积分10
12秒前
雪白秋莲完成签到,获得积分10
14秒前
cf2v发布了新的文献求助10
15秒前
我是老大应助赵鑫雅采纳,获得10
16秒前
17秒前
科研通AI5应助tdtk采纳,获得10
19秒前
19秒前
左丘绝山发布了新的文献求助10
20秒前
wangli完成签到,获得积分10
21秒前
务实的胡萝卜完成签到 ,获得积分10
21秒前
吨吨发布了新的文献求助10
21秒前
fareless完成签到 ,获得积分10
24秒前
25秒前
25秒前
活泼的面包完成签到 ,获得积分10
28秒前
28秒前
29秒前
赵鑫雅发布了新的文献求助10
31秒前
脑洞疼应助悲凉的睫毛膏采纳,获得10
31秒前
TheDing完成签到,获得积分10
31秒前
夜雨完成签到,获得积分10
35秒前
赵鑫雅完成签到,获得积分20
39秒前
41秒前
42秒前
零点零壹完成签到,获得积分10
42秒前
Lucas应助左丘绝山采纳,获得10
43秒前
43秒前
45秒前
十两发布了新的文献求助10
46秒前
淡淡夕阳发布了新的文献求助10
49秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563