OPO-FCM: A Computational Affection Based OCC-PAD-OCEAN Federation Cognitive Modeling Approach

外向与内向 和蔼可亲 人工智能 计算机科学 尽责 表达式(计算机科学) 认知 认知心理学 人格心理学 情感表达 心理学 五大性格特征 机器学习 人格 社会心理学 神经科学 程序设计语言
作者
Feng Liu,Hanyang Wang,Siyuan Shen,Xun Jia,Jingyi Hu,Jiahao Zhang,Xiyi Wang,Ying Lei,Aimin Zhou,Jiayin Qi,Pan Liu
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tcss.2022.3199119
摘要

In recent years, it is a difficult issue to integrate the deep cross-fertilization and interpretable cognitive modeling methods from the basic theory of emotional psychology with deep learning and other algorithms. To address this problem, a cognitive model that integrates the VGG-facial action coding system (FACS)-OCC model based on fer2013 expression features and the OCC-pleasure-arousal-dominance (PAD)-openness, conscientiousness, extraversion, agreeableness, and neuroticism (OCEAN) fusion of the basic theory of emotional psychology, namely, a computational affection-based OCC-PAD-OCEAN federation cognitive modeling (OPO-FCM), is constructed. By constructing this model and performing formal proof algorithms, it is shown that the OPO-FCM can acquire expression features in video streams, complete the acquisition of expression features in videos by training a deep neural network, map expressions to the PAD emotion space through the established expression–basic emotions–emotion space mapping relationship, and finally complete the mapping of the average emotion over a period time. The information of personality space is obtained through it. Finally, the experimental simulation of the model is conducted, and the results show that the average accuracy of the valid tested personalities is 79.56%. This article takes the knowledge-driven approach of emotional psychology as a starting point and combines deep learning techniques to construct interpretable cognitive models, thus providing new ideas for future cross-innovation between computer technology and psychology theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu666完成签到 ,获得积分10
1秒前
快乐慕灵完成签到,获得积分10
4秒前
4秒前
8秒前
10秒前
13秒前
13秒前
小譆驳回了Orange应助
14秒前
大饼大饼发布了新的文献求助10
20秒前
dwfwq完成签到,获得积分10
20秒前
andy发布了新的文献求助10
20秒前
邢契完成签到,获得积分10
22秒前
22秒前
23秒前
25秒前
淡然冬灵应助zxy采纳,获得30
25秒前
26秒前
April完成签到,获得积分10
26秒前
糊涂涂完成签到,获得积分10
26秒前
GGbond完成签到,获得积分10
27秒前
雪白翠桃发布了新的文献求助10
28秒前
Lucas应助lish采纳,获得10
28秒前
Neo发布了新的文献求助10
28秒前
summer发布了新的文献求助10
28秒前
29秒前
所所应助XXXXX采纳,获得30
29秒前
31秒前
31秒前
32秒前
hulala发布了新的文献求助10
32秒前
32秒前
April发布了新的文献求助10
33秒前
solum完成签到 ,获得积分10
35秒前
感动背包完成签到,获得积分10
35秒前
36秒前
37秒前
Whale完成签到 ,获得积分10
37秒前
yoonkk完成签到,获得积分10
37秒前
38秒前
赘婿应助菜虚鲲采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366