Multi-institutional PET/CT image segmentation using federated deep transformer learning

计算机科学 分位数 分割 人工智能 机器学习 算法 有损压缩 深度学习 数学 统计
作者
Isaac Shiri,Behrooz Razeghi,Alireza Vafaei Sadr,Mehdi Amini,Yazdan Salimi,Sohrab Ferdowsi,Peter Boor,Denız Gündüz,Slava Voloshynovskiy,Habib Zaidi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107706-107706 被引量:14
标识
DOI:10.1016/j.cmpb.2023.107706
摘要

Generalizable and trustworthy deep learning models for PET/CT image segmentation require large heterogeneous multi-institutional datasets. However, legal, ethical, and patient privacy issues challenge sharing of datasets between centers. To overcome these challenges, we developed a federated learning (FL) framework for multi-institutional PET/CT image segmentation. A dataset consisting of 328 FL (HN) cancer patients who underwent clinical PET/CT examinations gathered from six different centers was enrolled. A pure transformer network was implemented as fully core segmentation algorithms using dual channel PET/CT images. We evaluated different frameworks (single center-based, centralized baseline, as well as seven different FL algorithms) using 68 PET/CT images (20% of each center data). In particular, the implemented FL algorithms include clipping with the quantile estimator (ClQu), zeroing with the quantile estimator (ZeQu), federated averaging (FedAvg), lossy compression (LoCo), robust aggregation (RoAg), secure aggregation (SeAg), and Gaussian differentially private FedAvg with adaptive quantile clipping (GDP-AQuCl). The Dice coefficient was 0.80±0.11 for both centralized and SeAg FL algorithms. All FL approaches achieved centralized learning model performance with no statistically significant differences. Among the FL algorithms, SeAg and GDP-AQuCl performed better than the other techniques. However, there was no statistically significant difference. All algorithms, except the center-based approach, resulted in relative errors less than 5% for SUVmax and SUVmean for all FL and centralized methods. Centralized and FL algorithms significantly outperformed the single center-based baseline. The developed FL-based (with centralized method performance) algorithms exhibited promising performance for HN tumor segmentation from PET/CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助123采纳,获得10
1秒前
科研通AI5应助响铃采纳,获得10
2秒前
穆空完成签到,获得积分10
2秒前
2秒前
4秒前
just_cook完成签到,获得积分10
5秒前
南栀完成签到 ,获得积分10
6秒前
huihuiyve完成签到,获得积分10
9秒前
pluto应助lam采纳,获得10
10秒前
调皮黑猫应助峰回路转采纳,获得50
10秒前
11秒前
海迪发布了新的文献求助10
11秒前
韩瑶发布了新的文献求助10
11秒前
平常的毛豆应助南栀采纳,获得10
13秒前
Zetlynn完成签到,获得积分10
14秒前
科研通AI5应助dido采纳,获得10
15秒前
16秒前
小男孩发布了新的文献求助10
16秒前
李健的小迷弟应助gloval采纳,获得10
17秒前
在水一方应助哇哈哈采纳,获得10
17秒前
黑大帅完成签到,获得积分10
18秒前
19秒前
响铃发布了新的文献求助10
21秒前
闪闪火车完成签到 ,获得积分10
21秒前
23秒前
jubaoswag发布了新的文献求助20
23秒前
pluto应助lam采纳,获得10
24秒前
24秒前
sun完成签到,获得积分10
28秒前
科研通AI5应助AQ采纳,获得10
29秒前
30秒前
十一完成签到,获得积分10
30秒前
充电宝应助踏实口红采纳,获得10
31秒前
32秒前
zhoutiantian完成签到 ,获得积分10
33秒前
小男孩完成签到,获得积分10
34秒前
34秒前
KanmenRider发布了新的文献求助10
34秒前
ZZZZZ发布了新的文献求助10
36秒前
轻松的小虾米完成签到,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742