An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input

加权 地表径流 反距离权重法 计算机科学 算法 卷积神经网络 时间序列 人工智能 数据挖掘 机器学习 计算机视觉 多元插值 生态学 医学 放射科 双线性插值 生物
作者
Zhiyuan Yao,Zhaocai Wang,Dangwei Wang,Tunhua Wu,Lingxuan Chen
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:625: 129977-129977 被引量:89
标识
DOI:10.1016/j.jhydrol.2023.129977
摘要

Accurate prediction of river runoff is of great significance for water resources management, flood prevention and mitigation. The causes of runoff are complex and the mechanisms behind them are difficult to grasp. Building a data-driven deep learning model for runoff prediction is an effective solution. To achieve the fusion of multi-source information, prediction accuracy and wide applicability, a hybrid model based on CNN-LSTM & GRU-ISSA is proposed in this study. In this paper, meteorological data, hydrological data and runoff data are selected and the maximum information coefficient (MIC) is used to calculate the relationship between each variable and runoff in order to reduce the dimensionality of the data. A convolutional neural network (CNN) is used to extract features of the long time series of runoff and a long short-term memory network (LSTM) is used for the prediction of the long time series of runoff. A gated recurrent unit (GRU) is also used for the short time series prediction of runoff. In order to extract the advantages of both prediction models, an adaptive weighting module (AWM) is proposed to dynamically learn the outputs of both models and combine them into the final prediction results. To be able to solve the selection of model hyperparameters, we use the improved sparrow search algorithm (ISSA). This algorithm introduces two improvement points, Lévy Flight and Sine Cosine Algorithm, based on the Sparrow Search Algorithm (SSA), to achieve fast convergence of the algorithm with better global optimal solutions. The proposed model was validated using watersheds with different runoff ranges, e.g., in the Bailong River watershed, the NSE value was 0.90 and the RMSE value was 2.17. The results showed that the proposed model significantly outperformed the other baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
糯米团完成签到,获得积分10
2秒前
牛奶加咖啡完成签到,获得积分10
2秒前
小景007完成签到,获得积分10
2秒前
Orange应助小赞采纳,获得30
3秒前
超帅的怡发布了新的文献求助10
3秒前
1234完成签到,获得积分10
3秒前
布吉岛呀发布了新的文献求助10
4秒前
4秒前
lala发布了新的文献求助10
5秒前
申贺臣发布了新的文献求助10
6秒前
活泼的番茄完成签到,获得积分10
7秒前
7秒前
充电宝应助风yiya采纳,获得10
7秒前
8秒前
8秒前
Akim应助小张采纳,获得10
8秒前
飞飞完成签到,获得积分10
8秒前
9秒前
Hermione完成签到,获得积分10
9秒前
9秒前
超帅的怡完成签到,获得积分10
9秒前
10秒前
zzz完成签到,获得积分10
10秒前
11秒前
12秒前
ufofly730完成签到 ,获得积分10
12秒前
搜集达人应助不爱喝可乐采纳,获得10
12秒前
说书人发布了新的文献求助10
13秒前
zhenyu完成签到,获得积分10
13秒前
13秒前
zyf发布了新的文献求助10
14秒前
14秒前
doctorbba发布了新的文献求助30
14秒前
fh完成签到,获得积分20
14秒前
安东路完成签到,获得积分10
14秒前
不要加糖发布了新的文献求助10
16秒前
欧阳完成签到 ,获得积分10
16秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150