UNI-RNA: UNIVERSAL PRE-TRAINED MODELS REVOLUTIONIZE RNA RESEARCH

计算机科学 核糖核酸 背景(考古学) 步伐 数据科学 人工智能 计算生物学 生物 遗传学 基因 地理 大地测量学 古生物学
作者
Xi Wang,Gu Rong,Zhiyuan Chen,Yongge Li,Xiao-Hong Ji,Guolin Ke,Han Wen
标识
DOI:10.1101/2023.07.11.548588
摘要

A bstract RNA molecules play a crucial role as intermediaries in diverse biological processes. Attaining a profound understanding of their function can substantially enhance our comprehension of life’s activities and facilitate drug development for numerous diseases. The advent of high-throughput sequencing technologies makes vast amounts of RNA sequence data accessible, which contains invaluable information and knowledge. However, deriving insights for further application from such an immense volume of data poses a significant challenge. Fortunately, recent advancements in pre-trained models have surfaced as a revolutionary solution for addressing such challenges owing to their exceptional ability to automatically mine and extract hidden knowledge from massive datasets. Inspired by the past successes, we developed a novel context-aware deep learning model named Uni-RNA that performs pre-training on the largest dataset of RNA sequences at the unprecedented scale to date. During this process, our model autonomously unraveled the obscured evolutionary and structural information embedded within the RNA sequences. As a result, through fine-tuning, our model achieved the state-of-the-art (SOTA) performances in a spectrum of downstream tasks, including both structural and functional predictions. Overall, Uni-RNA established a new research paradigm empowered by the large pre-trained model in the field of RNA, enabling the community to unlock the power of AI at a whole new level to significantly expedite the pace of research and foster groundbreaking discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉以寒完成签到,获得积分10
1秒前
liaodongjun应助Jennier采纳,获得10
1秒前
Hh完成签到,获得积分10
2秒前
艾泽拉斯的囚徒完成签到,获得积分10
3秒前
kiko完成签到,获得积分10
4秒前
小摩尔完成签到 ,获得积分10
4秒前
dou完成签到,获得积分10
4秒前
暴躁的眼神完成签到,获得积分10
5秒前
赘婿应助三只小猪采纳,获得10
5秒前
gzzhao完成签到 ,获得积分10
5秒前
weadu完成签到,获得积分10
5秒前
美好寒梦完成签到 ,获得积分10
6秒前
健忘的雨安完成签到,获得积分10
6秒前
迷人啤酒完成签到,获得积分10
6秒前
WANG发布了新的文献求助10
7秒前
刘荣圣完成签到,获得积分10
7秒前
8秒前
清爽的碧空完成签到,获得积分10
10秒前
灵美完成签到,获得积分10
10秒前
林林林林完成签到,获得积分10
10秒前
复杂真完成签到,获得积分10
10秒前
格兰德法泽尔完成签到,获得积分10
10秒前
虚幻沛文完成签到 ,获得积分10
10秒前
周周粥完成签到 ,获得积分10
11秒前
Lyw完成签到 ,获得积分10
11秒前
gigi完成签到,获得积分10
11秒前
12秒前
12秒前
dspan发布了新的文献求助10
12秒前
欣新完成签到,获得积分10
12秒前
虾滑完成签到,获得积分10
12秒前
三叶草完成签到,获得积分10
13秒前
13秒前
通透科研完成签到,获得积分10
14秒前
silsotiscolor完成签到,获得积分10
14秒前
1234完成签到 ,获得积分10
15秒前
随风完成签到,获得积分0
15秒前
吕健完成签到,获得积分10
16秒前
阿胡完成签到 ,获得积分10
16秒前
独特乘风完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946233
求助须知:如何正确求助?哪些是违规求助? 3491190
关于积分的说明 11059527
捐赠科研通 3222119
什么是DOI,文献DOI怎么找? 1780911
邀请新用户注册赠送积分活动 865892
科研通“疑难数据库(出版商)”最低求助积分说明 800083