催化作用
氧化剂
化学
降级(电信)
零价铁
亚甲蓝
浸出(土壤学)
激进的
核化学
水溶液
化学工程
有机化学
吸附
土壤水分
电信
环境科学
光催化
计算机科学
土壤科学
工程类
作者
Guorong Shi,Shuangqing Zeng,Yefeng Liu,Jun Xiang,Dale Deng,Chenmeng Wu,Qian Teng,Hua Yang
标识
DOI:10.1016/j.ecoenv.2023.115240
摘要
To reduce the consumption of oxidant and catalyst in Fenton-like reaction and to realize the reuse of catalyst, yeast supported iron nanoparticles (nZVI@SCM) was synthesized by tobacco leaf extract and applied in the heterogeneous Fenton-like degradation of aqueous methylene blue (MB) at ambient conditions. The performance of the composite was exploited in terms of catalytic activity and factors influencing MB degradation. The surface changes of nZVI@SCM before and after reaction were characterized by XPS, SEM, FT-IR and XRD. Iron leaching, primary reactive oxidizing species, and the storage stability and reusability of catalyst were also investigated. Typically, 99.7% removal of 50 mg/L MB, with a TOC removal of 97.2%, could be achieved within 10 h by 0.1 g/L nZVI@SCM coupled with 1.0 mM H2O2. The MB degradation is in good agreement with the pseudo-first-order model, and hydroxyl radicals in the bulk solution is the main reactive oxidizing species responsible for MB degradation. Based on the identified intermediates by liquid chromatography/mass spectrometry, the possible MB degradation mechanism in the nZVI@SCM/H2O2 system is discussed. The developed high-performance nZVI@SCM catalyst strategy can provide a new route in enhancing the Fenton-like degradation of organic contaminants with less consumption of catalyst and oxidant.
科研通智能强力驱动
Strongly Powered by AbleSci AI