Improved Vertebral Fracture Assessment: The Game-Changing Potential of Deep Learning with Multidetector CT

医学 多探测器计算机断层扫描 介入放射学 放射科 伊拉斯谟+ 大学医院 核医学 计算机断层摄影术 外科 艺术史 艺术 文艺复兴
作者
Christian Booz,Tommaso D’Angelo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3)
标识
DOI:10.1148/radiol.240409
摘要

HomeRadiologyVol. 310, No. 3 PreviousNext Reviews and CommentaryEditorialImproved Vertebral Fracture Assessment: The Game-Changing Potential of Deep Learning with Multidetector CTChristian Booz , Tommaso D'AngeloChristian Booz , Tommaso D'AngeloAuthor AffiliationsFrom the Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany (C.B., T.D.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (C.B.); Department of Dental and Morphological and Functional Imaging, Diagnostic and Interventional Radiology Unit, University Hospital Messina, Messina, Italy (T.D.); and Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (T.D.).Address correspondence to C.B. (email: [email protected]).Christian Booz Tommaso D'AngeloPublished Online:Mar 26 2024https://doi.org/10.1148/radiol.240409See also the article by Foreman et al in this issue.MoreSectionsFull textPDF ToolsAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookXLinked In References1. Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol 2004;183(4):949–958. Crossref, Medline, Google Scholar2. Ruiz Santiago F, Tomás Muñoz P, Moya Sánchez E, Revelles Paniza M, Martínez Martínez A, Pérez Abela AL. Classifying thoracolumbar fractures: role of quantitative imaging. Quant Imaging Med Surg 2016;6(6):772–784. Crossref, Medline, Google Scholar3. Foreman SC, Schinz D, Husseini ME, et al. Deep learning to differentiate benign and malignant vertebral fractures at multidetector CT. Radiology 2024;310(3):e231429. Google Scholar4. Li Y, Zhang Y, Zhang E, et al. Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning. Eur Radiol 2021;31(12):9612–9619. Crossref, Medline, Google Scholar5. Goller SS, Foreman SC, Rischewski JF, et al. Differentiation of benign and malignant vertebral fractures using a convolutional neural network to extract CT-based texture features. Eur Spine J 2023;32(12):4314–4320. Crossref, Medline, Google Scholar6. Park T, Yoon MA, Cho YC, et al. Automated segmentation of the fractured vertebrae on CT and its applicability in a radiomics model to predict fracture malignancy. Sci Rep 2022;12(1):6735. [Published correction appears in Sci Rep 2022;12(1):7171.] Crossref, Medline, Google Scholar7. Duan S, Hua Y, Cao G, et al. Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics. Eur J Radiol 2023;165:110899. Crossref, Medline, Google Scholar8. D'Angelo T, Caudo D, Blandino A, et al. Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications. J Clin Ultrasound 2022;50(9):1414–1431. Crossref, Medline, Google Scholar9. Jung J, Dai J, Liu B, Wu Q. Artificial intelligence in fracture detection with different image modalities and data types: A systematic review and meta-analysis. PLOS Digit Health 2024;3(1):e0000438. Crossref, Medline, Google Scholar10. Cavallaro M, D'Angelo T, Albrecht MH, et al. Comprehensive comparison of dual-energy computed tomography and magnetic resonance imaging for the assessment of bone marrow edema and fracture lines in acute vertebral fractures. Eur Radiol 2022;32(1):561–571. Crossref, Medline, Google ScholarArticle HistoryReceived: Feb 8 2024Revision requested: Feb 23 2024Revision received: Feb 23 2024Accepted: Feb 26 2024Published online: Mar 26 2024 FiguresReferencesRelatedDetailsAccompanying This ArticleDeep Learning to Differentiate Benign and Malignant Vertebral Fractures at Multidetector CTMar 26 2024RadiologyRecommended Articles RSNA Education Exhibits RSNA Case Collection Vol. 310, No. 3 Metrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫的忆梅完成签到,获得积分10
1秒前
一路向前完成签到,获得积分10
2秒前
123完成签到 ,获得积分10
2秒前
南木发布了新的文献求助10
3秒前
xjy发布了新的文献求助10
3秒前
zhu97完成签到,获得积分10
7秒前
内向映天完成签到 ,获得积分10
8秒前
JSEILWQ完成签到 ,获得积分10
13秒前
13秒前
不吃番茄完成签到 ,获得积分10
14秒前
xiaoma发布了新的文献求助10
15秒前
16秒前
杨帆宇发布了新的文献求助10
19秒前
wuhu发布了新的文献求助10
22秒前
titamisulydia完成签到,获得积分10
23秒前
24秒前
轻松连虎完成签到,获得积分20
28秒前
槐序完成签到,获得积分10
28秒前
丘比特应助loveless采纳,获得10
30秒前
lJH完成签到,获得积分10
34秒前
35秒前
小蘑菇应助轻松连虎采纳,获得10
36秒前
大个应助水若冰寒采纳,获得10
37秒前
杨涛完成签到 ,获得积分10
39秒前
39秒前
40秒前
xhxh发布了新的文献求助10
42秒前
loveless发布了新的文献求助10
44秒前
46秒前
满意的亦巧完成签到 ,获得积分10
46秒前
酷波er应助zlkdys采纳,获得10
47秒前
北风吹微云完成签到,获得积分10
48秒前
充电宝应助Estella采纳,获得10
48秒前
落沧完成签到 ,获得积分10
50秒前
飞天大薯条完成签到,获得积分10
50秒前
水若冰寒发布了新的文献求助10
51秒前
pluto应助科研通管家采纳,获得10
51秒前
科目三应助wuhu采纳,获得10
51秒前
adgcxvjj应助科研通管家采纳,获得10
51秒前
星辰大海应助科研通管家采纳,获得10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236697
捐赠科研通 3043596
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119