摘要
HomeRadiologyVol. 310, No. 3 PreviousNext Reviews and CommentaryEditorialImproved Vertebral Fracture Assessment: The Game-Changing Potential of Deep Learning with Multidetector CTChristian Booz , Tommaso D'AngeloChristian Booz , Tommaso D'AngeloAuthor AffiliationsFrom the Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany (C.B., T.D.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (C.B.); Department of Dental and Morphological and Functional Imaging, Diagnostic and Interventional Radiology Unit, University Hospital Messina, Messina, Italy (T.D.); and Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (T.D.).Address correspondence to C.B. (email: [email protected]).Christian Booz Tommaso D'AngeloPublished Online:Mar 26 2024https://doi.org/10.1148/radiol.240409See also the article by Foreman et al in this issue.MoreSectionsFull textPDF ToolsAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookXLinked In References1. Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol 2004;183(4):949–958. Crossref, Medline, Google Scholar2. Ruiz Santiago F, Tomás Muñoz P, Moya Sánchez E, Revelles Paniza M, Martínez Martínez A, Pérez Abela AL. Classifying thoracolumbar fractures: role of quantitative imaging. Quant Imaging Med Surg 2016;6(6):772–784. Crossref, Medline, Google Scholar3. Foreman SC, Schinz D, Husseini ME, et al. Deep learning to differentiate benign and malignant vertebral fractures at multidetector CT. Radiology 2024;310(3):e231429. Google Scholar4. Li Y, Zhang Y, Zhang E, et al. Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning. Eur Radiol 2021;31(12):9612–9619. Crossref, Medline, Google Scholar5. Goller SS, Foreman SC, Rischewski JF, et al. Differentiation of benign and malignant vertebral fractures using a convolutional neural network to extract CT-based texture features. Eur Spine J 2023;32(12):4314–4320. Crossref, Medline, Google Scholar6. Park T, Yoon MA, Cho YC, et al. Automated segmentation of the fractured vertebrae on CT and its applicability in a radiomics model to predict fracture malignancy. Sci Rep 2022;12(1):6735. [Published correction appears in Sci Rep 2022;12(1):7171.] Crossref, Medline, Google Scholar7. Duan S, Hua Y, Cao G, et al. Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics. Eur J Radiol 2023;165:110899. Crossref, Medline, Google Scholar8. D'Angelo T, Caudo D, Blandino A, et al. Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications. J Clin Ultrasound 2022;50(9):1414–1431. Crossref, Medline, Google Scholar9. Jung J, Dai J, Liu B, Wu Q. Artificial intelligence in fracture detection with different image modalities and data types: A systematic review and meta-analysis. PLOS Digit Health 2024;3(1):e0000438. Crossref, Medline, Google Scholar10. Cavallaro M, D'Angelo T, Albrecht MH, et al. Comprehensive comparison of dual-energy computed tomography and magnetic resonance imaging for the assessment of bone marrow edema and fracture lines in acute vertebral fractures. Eur Radiol 2022;32(1):561–571. Crossref, Medline, Google ScholarArticle HistoryReceived: Feb 8 2024Revision requested: Feb 23 2024Revision received: Feb 23 2024Accepted: Feb 26 2024Published online: Mar 26 2024 FiguresReferencesRelatedDetailsAccompanying This ArticleDeep Learning to Differentiate Benign and Malignant Vertebral Fractures at Multidetector CTMar 26 2024RadiologyRecommended Articles RSNA Education Exhibits RSNA Case Collection Vol. 310, No. 3 Metrics Altmetric Score PDF download