A Cross-Project Defect Prediction Approach Based on Code Semantics and Cross-Version Structural Information

计算机科学 程序设计语言 语义学(计算机科学) 软件工程
作者
Yifan Zou,Huiqiang Wang,Hongwu Lv,Shuai Zhao,Haoye Tian
出处
期刊:International Journal of Software Engineering and Knowledge Engineering [World Scientific]
卷期号:34 (07): 1135-1171
标识
DOI:10.1142/s0218194024500165
摘要

Context: Cross-project defect prediction (CPDP), due to the potential of adaption by industry in realistic scenarios, had gained significant attention from the research community. Currently, existing CPDP studies use static statistical features designed by experts, which might not capture the semantic and structural aspects of software, resulting in low accuracy in defect prediction. Meanwhile, they tend to overlook the valuable iterative information brought about by version updates in mature software projects. Objective: This paper introduces DETECTOR, a novel CPDP approach based on coDE semanTic and cross-vErsion struCTural infORmation to leverage cross-versions features of the software and improve the performance of CPDP. Methods: DETECTOR parses source code to exploit Abstract Syntax Trees (ASTs) and cross-version software network (Cross-SN) that consists of internal class dependency network and cross-version class dependency edges. It utilizes Attention-based Bi-LSTM and simplified graph convolutional neural networks to automatically extract software features from ASTs and Cross-SN. The extracted features are fused using gate(⋅) to generate more effective cross-version features. Finally the source project is selected to carry out the data used to train the classifier to predict the defects. Results: Empirical studies on seven open-source Java projects, the experiment results show that: (1) DETECTOR outperforms the state-of-the-art models in CPDP; (2) our proposed cross-version dependent edges positively contribute to DETECTOR performance; (3) gate(⋅) outperforms existing strategies in fusion features; (4) more multi-versions information enhance DETECTOR’s performance. Conclusion: DETECTOR can predict more defects in CPDP and improve the accuracy and effectiveness of prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助thl采纳,获得10
刚刚
刚刚
怕黑的班完成签到,获得积分10
刚刚
1秒前
1秒前
Lucas应助愉快依白采纳,获得10
1秒前
1秒前
安好完成签到,获得积分10
3秒前
3秒前
深情的安青完成签到,获得积分10
3秒前
飞兰发布了新的文献求助10
3秒前
3秒前
紫沫完成签到,获得积分10
4秒前
123发布了新的文献求助10
5秒前
zila完成签到,获得积分10
5秒前
华仔应助王圆采纳,获得10
5秒前
5秒前
5秒前
yuan应助yam001采纳,获得10
6秒前
一杯晨汁发布了新的文献求助10
6秒前
6秒前
6秒前
Sun发布了新的文献求助10
7秒前
幸幸发布了新的文献求助10
7秒前
科研通AI2S应助jack1采纳,获得10
8秒前
MartinaLZ发布了新的文献求助30
9秒前
搜集达人应助zila采纳,获得10
9秒前
9秒前
Bink发布了新的文献求助10
9秒前
花开富贵完成签到,获得积分10
9秒前
大魁完成签到,获得积分10
10秒前
oken关注了科研通微信公众号
10秒前
阿丕啊呸完成签到,获得积分10
10秒前
12秒前
12秒前
12秒前
12秒前
南初完成签到,获得积分10
12秒前
12秒前
丘比特应助畅快行云采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831