酶
葡萄糖醛酸酶
化学
生物化学
基质(水族馆)
固定化酶
显色的
水解
β-半乳糖苷酶
葡萄糖醛酸
重组DNA
色谱法
组合化学
多糖
大肠杆菌
生物
生态学
基因
作者
Sofia Chatzigeorgiou,Jana Jílková,Lucie Korecká,Radka Janyšková,Martina Hermannová,Matěj Šimek,Dagmar Čožíková,Marcela Slováková,Zuzana Bı́lková,Jan Bobek,Zbyněk Černý,Matouš Čihák,Vladimı́r Velebný
标识
DOI:10.1016/j.carbpol.2023.121078
摘要
Popularity of hyaluronan (HA) in the cosmetics and pharmaceutical industries, led to the investigation and development of new HA-based materials, with enzymes playing a key role. Beta-D-glucuronidases catalyze the hydrolysis of a beta-D-glucuronic acid residue from the non-reducing end of various substrates. However, lack of specificity towards HA for most beta-D-glucuronidases, in addition to the high cost and low purity of those active on HA, have prevented their widespread application. In this study, we investigated a recombinant beta-glucuronidase from Bacteroides fragilis (rBfGUS). We demonstrated the rBfGUS's activity on native, modified, and derivatized HA oligosaccharides (oHAs). Using chromogenic beta-glucuronidase substrate and oHAs, we characterized the enzyme's optimal conditions and kinetic parameters. Additionally, we evaluated rBfGUS's activity towards oHAs of various sizes and types. To increase reusability and ensure the preparation of enzyme-free oHA products, rBfGUS was immobilized on two types of magnetic macroporous bead cellulose particles. Both immobilized forms of rBfGUS demonstrated suitable operational and storage stabilities, and their activity parameters were comparable to the free form. Our findings suggest that native and derivatized oHAs can be prepared using this bacterial beta-glucuronidase, and a novel biocatalyst with enhanced operational parameters has been developed with a potential for industrial use.
科研通智能强力驱动
Strongly Powered by AbleSci AI