Path planning for unmanned load–haul–dump machines based on a VHF_A* algorithm

路径(计算) 计算机科学 算法 实时计算 计算机网络
作者
Bingli Zhang,Yangyang Zhang,Chengbiao Zhang,Jin Cheng,Gan Shen,Xinyu Wang
标识
DOI:10.1177/09544062241228391
摘要

This study aimed to address the low search efficiency, long planning time, and unsmooth path problems in narrow and curved underground mining cave environments using traditional path planning algorithms. Thus, a new path planning method (VFH_A *) based on VFA and A* is proposed for unmanned load–haul–dump (LHD) operating in underground mines. First, the trajectory of the LHD articulation point is considered, the nodes are extended using this point, and collision detection is performed. Notably, the extended nodes neither collide nor conform to the trajectory of the LHD. Second, the vector field histogram (VFH) algorithm is introduced, and the steering and collision threat costs are combined with the comprehensive cost function of the traditional A* algorithm to form the VFH_A* algorithm. Thus, the node with the lowest comprehensive cost is selected for expansion, and redundant nodes are eliminated from the searched node paths. Third, the path is smoothed via Bezier interpolation. This ensures that the LHD operates smoothly and prevents excessive changes in the articulation angle. The proposed method was evaluated using above-ground and underground simulations. Compared with A* and GA algorithms, the VFH_A* algorithm significantly improved the search efficiency and can efficiently generate safe and smooth task paths in different scenarios. The planning time for each scenario was reduced by 85%. Finally, tracking experiments were conducted on the planned task paths of 1.5 and 2.5 m/s, indicating that the tracking error was less than 0.23 m. Overall, the planned path meets the requirements of unmanned LHD, indicating that the proposed method can adapt to practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dnmd发布了新的文献求助10
刚刚
双儿关注了科研通微信公众号
1秒前
少寒萧完成签到 ,获得积分10
4秒前
4秒前
6秒前
7秒前
jenningseastera应助胖虎不胖采纳,获得30
7秒前
zlx发布了新的文献求助30
9秒前
12秒前
这瓜不卖完成签到,获得积分10
12秒前
陈三水完成签到 ,获得积分10
13秒前
可爱的函函应助北海采纳,获得10
14秒前
clamon完成签到,获得积分10
15秒前
lecas发布了新的文献求助10
18秒前
852应助双儿采纳,获得10
18秒前
27秒前
顾矜应助YY采纳,获得10
30秒前
小刘发布了新的文献求助10
33秒前
传统的凝天完成签到,获得积分10
36秒前
小刘完成签到,获得积分10
43秒前
田様应助Zack采纳,获得10
43秒前
yunjun完成签到 ,获得积分10
43秒前
科研通AI5应助程雯慧采纳,获得10
45秒前
48秒前
50秒前
lily发布了新的文献求助20
53秒前
程雯慧发布了新的文献求助10
56秒前
学医的杨同学完成签到,获得积分10
56秒前
爆米花应助想不想采纳,获得10
57秒前
冲刺的仙人掌完成签到,获得积分10
57秒前
芝麻完成签到,获得积分0
58秒前
EEEE完成签到,获得积分10
59秒前
简单冰巧完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
风趣的冰安完成签到,获得积分10
1分钟前
不是山谷发布了新的文献求助10
1分钟前
1分钟前
Zack发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781926
求助须知:如何正确求助?哪些是违规求助? 3327474
关于积分的说明 10231495
捐赠科研通 3042382
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799461
科研通“疑难数据库(出版商)”最低求助积分说明 758822