Deep LSTM and LSTM-Attention Q-learning based reinforcement learning in oil and gas sector prediction

强化学习 深度学习 马尔可夫决策过程 人工智能 计算机科学 投资决策 机器学习 短时记忆 库存(枪支) 股票市场 背景(考古学) 马尔可夫过程 循环神经网络 人工神经网络 经济 行为经济学 财务 工程类 统计 生物 古生物学 机械工程 数学
作者
David Opeoluwa Oyewola,Sulaiman Awwal Akinwunmi,Temidayo Oluwatosin Omotehinwa
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111290-111290 被引量:26
标识
DOI:10.1016/j.knosys.2023.111290
摘要

Accurate prediction of stock market trends and movements holds great significance in the financial industry as it enables investors, traders, and decision-makers to make informed choices and optimize their investment strategies. In the context of the oil and gas sector, where stock prices are influenced by complex market dynamics and various external factors, reliable predictions are essential for effective decision-making and risk management. This study proposes Deep Long Short-Term Memory Q-Learning (DLQL) and Deep Long Short-Term Memory Attention Q-Learning (DLAQL) models and state-of-the-art Long Short-Term Memory (LSTM) for predicting stock prices in the oil and gas sector. The study utilizes historical stock price data of Cenovus Energy Inc. (CVE), MPLX LP (MPLX), Cheniere Energy Inc. (LNG), and Suncor Energy Inc. (SU) to create and validate these models. The research employs the Markov Decision Process (MDP) framework, a widely-used reinforcement learning technique, to train the deep LSTM Q-Learning and deep LSTM Attention Q-Learning models. This framework allows the models to learn optimal policies based on historical data, enabling them to make accurate predictions and adapt to changing market conditions. The findings of this study reveal that the proposed DLQL and DLAQL perform excellently well in terms of prediction accuracy in the oil and gas sector. The inclusion of attention mechanisms in the DLAQL model further enhances its performance by allowing it to focus on important features and capture relevant information. The results of this research underscore the potential of deep LSTM Q-Learning and deep LSTM Attention Q-Learning models in stock market prediction within the oil and gas sector. The application of these models can lead to improved decision-making, enhanced risk management, and increased profitability for market participants. Further exploration and refinement of these models, along with the incorporation of additional variables and market indicators, can contribute to the development of more sophisticated prediction models in the future. Overall, this study contributes to the advancement of stock market prediction techniques, specifically in the oil and gas sector, by introducing and evaluating the efficacy of deep LSTM Q-Learning and deep LSTM Attention Q-Learning models. The findings highlight the importance of accurate stock market predictions and demonstrate the potential benefits of leveraging these models within the MDP framework to support decision-making and risk management in the dynamic and competitive oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助GSQ采纳,获得10
1秒前
7秒前
Java完成签到,获得积分10
9秒前
水本无忧87完成签到,获得积分10
10秒前
猪猪女孩发布了新的文献求助10
13秒前
hyjcs完成签到,获得积分0
13秒前
飞雪完成签到,获得积分10
15秒前
小庄完成签到 ,获得积分10
17秒前
shepherd完成签到,获得积分10
19秒前
Keyuuu30完成签到,获得积分0
20秒前
ROMANTIC完成签到 ,获得积分10
22秒前
漂亮夏兰完成签到 ,获得积分10
24秒前
所所应助猪猪女孩采纳,获得10
26秒前
瓜农完成签到 ,获得积分10
34秒前
猪猪女孩完成签到,获得积分10
35秒前
舒适的梦玉完成签到,获得积分10
38秒前
陈豆豆完成签到 ,获得积分10
43秒前
Bambookiller完成签到,获得积分10
47秒前
drz完成签到 ,获得积分10
48秒前
凌晨五点的完成签到,获得积分10
51秒前
const完成签到,获得积分10
54秒前
Dotson完成签到,获得积分10
57秒前
wzjs完成签到 ,获得积分10
1分钟前
酒剑仙完成签到,获得积分10
1分钟前
陈M雯完成签到 ,获得积分10
1分钟前
满城烟沙完成签到 ,获得积分0
1分钟前
huhu完成签到 ,获得积分10
1分钟前
339564965完成签到,获得积分10
1分钟前
雷博完成签到,获得积分10
1分钟前
大卫戴完成签到 ,获得积分10
1分钟前
1分钟前
ccc完成签到,获得积分10
1分钟前
无语的冰淇淋完成签到 ,获得积分10
1分钟前
喜悦松完成签到,获得积分10
1分钟前
eee应助陆上飞采纳,获得200
1分钟前
雷博发布了新的文献求助10
1分钟前
研友_ZA2B68完成签到,获得积分10
1分钟前
只想顺利毕业的科研狗完成签到,获得积分10
1分钟前
自由寻冬完成签到 ,获得积分10
1分钟前
头孢西丁完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321608
关于积分的说明 10206370
捐赠科研通 3036673
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797439
科研通“疑难数据库(出版商)”最低求助积分说明 757839