Screening and identification of unknown chemical contaminants in food based on liquid chromatography–high-resolution mass spectrometry and machine learning

化学 污染 人工智能 鉴定(生物学) 分辨率(逻辑) 质谱法 液相色谱-质谱法 高分辨率 色谱法 计算机科学 生态学 植物 遥感 生物 地质学
作者
Tiantian Chen,Wenying Liang,Xiuqiong Zhang,Yuting Wang,Xin Lu,Yujie Zhang,Zhaohui Zhang,Lei You,Xinyu Liu,Chunxia Zhao,Guowang Xu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1287: 342116-342116 被引量:13
标识
DOI:10.1016/j.aca.2023.342116
摘要

Unknown or unexpected chemical contaminants and/or their transformation products in food that may be harmful to humans need to be discovered for comprehensive safety evaluation. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS) is a powerful tool for detecting chemical contaminants in food samples. However, identifying all of peaks in LC-HRMS is not possible, but if class information is known in advance, further identification will become easier. In this work, a novel MS2 spectra classification-driven screening strategy was constructed based on LC-HRMS and machine learning. First, the classification model was developed based on machine learning algorithm using class information and experimental MS2 data of chemical contaminants and other non-contaminants. By using the developed artificial neural network classification model, in total 32 classes of pesticides, veterinary drugs and mycotoxins were classified with good prediction accuracy and low false-positive rate. Based on the classification model, a screening procedure was developed in which the classes of unknown features in LC-HRMS were first predicted through the classification model, and then their structures were identified under the guidance of class information. Finally, the developed strategy was tentatively applied to the analysis of pork and aquatic products, and 8 chemical contaminants and 11 transformation products belonging to 8 classes were found. This strategy enables screening of unknown chemical contaminants and transformation products in complex food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智咖啡豆完成签到 ,获得积分10
8秒前
XU博士完成签到,获得积分10
13秒前
甜甜甜完成签到 ,获得积分10
18秒前
19秒前
imica完成签到 ,获得积分10
19秒前
源来是洲董完成签到,获得积分10
22秒前
ZW完成签到 ,获得积分10
25秒前
sysi完成签到 ,获得积分10
26秒前
元宝完成签到 ,获得积分10
29秒前
忒寒碜完成签到,获得积分10
32秒前
Alan完成签到 ,获得积分10
34秒前
fuxixixi发布了新的文献求助10
34秒前
活力的小猫咪完成签到 ,获得积分10
35秒前
nusiew完成签到,获得积分10
36秒前
协和_子鱼完成签到,获得积分0
39秒前
firesquall完成签到,获得积分10
40秒前
白云完成签到 ,获得积分10
41秒前
mads完成签到 ,获得积分10
53秒前
54秒前
alan完成签到 ,获得积分10
1分钟前
nano完成签到 ,获得积分10
1分钟前
海绵宝宝完成签到 ,获得积分10
1分钟前
呆鹅喵喵完成签到,获得积分10
1分钟前
微甜完成签到 ,获得积分10
1分钟前
秀丽的芷珍完成签到 ,获得积分10
1分钟前
CDQ完成签到,获得积分10
1分钟前
俏皮诺言完成签到 ,获得积分10
1分钟前
llu完成签到 ,获得积分10
1分钟前
孤独的问柳完成签到,获得积分10
1分钟前
小佳完成签到 ,获得积分10
1分钟前
超级李包包完成签到,获得积分10
1分钟前
djdh完成签到 ,获得积分10
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
Young应助flyingpig采纳,获得10
1分钟前
落红雨完成签到 ,获得积分10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
DaDA完成签到 ,获得积分10
1分钟前
科研通AI2S应助武雨寒采纳,获得10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131281
求助须知:如何正确求助?哪些是违规求助? 3668025
关于积分的说明 11601008
捐赠科研通 3365647
什么是DOI,文献DOI怎么找? 1849162
邀请新用户注册赠送积分活动 912898
科研通“疑难数据库(出版商)”最低求助积分说明 828355