生物矿化
方解石
文石
碳酸钙
球霰石
无定形碳酸钙
矿物
碳酸盐
纳米尺度
无定形固体
矿物学
碳酸盐矿物
化学
化学工程
材料科学
纳米技术
结晶学
有机化学
工程类
作者
Connor A. Schmidt,Éric Tambutté,Alexander A. Venn,Zhaoyong Zou,Cristina Castillo Alvarez,Laurent Devriendt,Hans A. Bechtel,Cayla A. Stifler,Samantha Anglemyer,Carolyn P. Breit,Connor L. Foust,Andrii Hopanchuk,Connor N. Klaus,I. Köhler,Isabelle M. LeCloux,Jaiden Mezera,Madeline R. Patton,Annie Purisch,Virginia Quach,Jaden S. Sengkhammee
标识
DOI:10.1038/s41467-024-46117-x
摘要
Abstract Calcium carbonate (CaCO 3 ) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO 2 into solid biominerals. Six crystalline polymorphs of CaCO 3 are known—3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO 3 ·6H 2 O), monohydrocalcite (CaCO 3 ·1H 2 O, MHC), and calcium carbonate hemihydrate (CaCO 3 ·½H 2 O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI