已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Flexible Job Shop Scheduling via Dual Attention Network-Based Reinforcement Learning

强化学习 计算机科学 可扩展性 调度(生产过程) 作业车间调度 人工智能 利用 对偶(语法数字) 一般化 工作车间 机器学习 数学优化 流水车间调度 嵌入式系统 艺术 数学分析 布线(电子设计自动化) 数学 计算机安全 文学类 数据库
作者
Runqing Wang,Gang Wang,Jian Sun,Fang Deng,Jie Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3091-3102 被引量:86
标识
DOI:10.1109/tnnls.2023.3306421
摘要

Flexible manufacturing has given rise to complex scheduling problems such as the flexible job shop scheduling problem (FJSP). In FJSP, operations can be processed on multiple machines, leading to intricate relationships between operations and machines. Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP. However, the quality of solutions still has room for improvement relative to that by the exact methods such as OR-Tools. To address this issue, this article presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making. The complex relationships between operations and machines are represented precisely and concisely, for which a dual-attention network (DAN) comprising several interconnected operation message attention blocks and machine message attention blocks is proposed. The DAN exploits the complicated relationships to construct production-adaptive operation and machine features to support high-quality decision-making. Experimental results using synthetic data as well as public benchmarks corroborate that the proposed approach outperforms both traditional PDRs and the state-of-the-art DRL method. Moreover, it achieves results comparable to exact methods in certain cases and demonstrates favorable generalization ability to large-scale and real-world unseen FJSP tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
刚刚
Doctor_Xie完成签到,获得积分20
2秒前
巴巴bow发布了新的文献求助30
4秒前
刘辰完成签到 ,获得积分10
4秒前
6秒前
王红玉完成签到,获得积分10
9秒前
Persist完成签到,获得积分10
9秒前
tamako完成签到 ,获得积分10
9秒前
科研通AI5应助令狐秋双采纳,获得100
10秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
唐泽雪穗应助科研通管家采纳,获得10
11秒前
唐泽雪穗应助科研通管家采纳,获得10
11秒前
风清扬应助科研通管家采纳,获得30
11秒前
浮游应助科研通管家采纳,获得10
11秒前
tuanheqi应助科研通管家采纳,获得80
11秒前
浮游应助科研通管家采纳,获得10
11秒前
tuanheqi应助科研通管家采纳,获得80
11秒前
11秒前
派大星完成签到 ,获得积分10
12秒前
12秒前
18秒前
cx完成签到 ,获得积分10
19秒前
Bin_Liu发布了新的文献求助10
20秒前
积极凌兰完成签到 ,获得积分10
20秒前
李彪发布了新的文献求助10
22秒前
24秒前
25秒前
等待的香魔应助Executor采纳,获得10
25秒前
隐形曼青应助echo采纳,获得10
27秒前
Nichols完成签到,获得积分10
27秒前
lmy关注了科研通微信公众号
28秒前
Jasper应助怦然心动采纳,获得10
29秒前
好好发布了新的文献求助10
29秒前
supreme发布了新的文献求助10
34秒前
柯语雪完成签到 ,获得积分10
39秒前
科研通AI5应助khan采纳,获得10
40秒前
小王爱看文献完成签到 ,获得积分0
43秒前
supreme完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185643
求助须知:如何正确求助?哪些是违规求助? 4371016
关于积分的说明 13611726
捐赠科研通 4223303
什么是DOI,文献DOI怎么找? 2316324
邀请新用户注册赠送积分活动 1314922
关于科研通互助平台的介绍 1263871