Added prognostic value of 3D deep learning-derived features from preoperative MRI for adult-type diffuse gliomas

比例危险模型 医学 危险系数 内科学 流体衰减反转恢复 多元统计 胶质瘤 多元分析 一致性 卷积神经网络 肿瘤科 核医学 人工智能 磁共振成像 放射科 计算机科学 机器学习 置信区间 癌症研究
作者
Jung Oh Lee,Sung Soo Ahn,Kyu Sung Choi,Junhyeok Lee,Joon Hwan Jang,Jung Hyun Park,Inpyeong Hwang,Chul‐Kee Park,Sung‐Hye Park,Jin Wook Chung,Seung Hong Choi
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (3): 571-580 被引量:4
标识
DOI:10.1093/neuonc/noad202
摘要

Abstract Background To investigate the prognostic value of spatial features from whole-brain MRI using a three-dimensional (3D) convolutional neural network for adult-type diffuse gliomas. Methods In a retrospective, multicenter study, 1925 diffuse glioma patients were enrolled from 5 datasets: SNUH (n = 708), UPenn (n = 425), UCSF (n = 500), TCGA (n = 160), and Severance (n = 132). The SNUH and Severance datasets served as external test sets. Precontrast and postcontrast 3D T1-weighted, T2-weighted, and T2-FLAIR images were processed as multichannel 3D images. A 3D-adapted SE-ResNeXt model was trained to predict overall survival. The prognostic value of the deep learning-based prognostic index (DPI), a spatial feature-derived quantitative score, and established prognostic markers were evaluated using Cox regression. Model evaluation was performed using the concordance index (C-index) and Brier score. Results The MRI-only median DPI survival prediction model achieved C-indices of 0.709 and 0.677 (BS = 0.142 and 0.215) and survival differences (P < 0.001 and P = 0.002; log-rank test) for the SNUH and Severance datasets, respectively. Multivariate Cox analysis revealed DPI as a significant prognostic factor, independent of clinical and molecular genetic variables: hazard ratio = 0.032 and 0.036 (P < 0.001 and P = 0.004) for the SNUH and Severance datasets, respectively. Multimodal prediction models achieved higher C-indices than models using only clinical and molecular genetic variables: 0.783 vs. 0.774, P = 0.001, SNUH; 0.766 vs. 0.748, P = 0.023, Severance. Conclusions The global morphologic feature derived from 3D CNN models using whole-brain MRI has independent prognostic value for diffuse gliomas. Combining clinical, molecular genetic, and imaging data yields the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奔铂儿钯完成签到,获得积分10
刚刚
Hello应助fyc采纳,获得10
刚刚
刚刚
刚刚
Hello应助Kakarot采纳,获得10
刚刚
LamuQili完成签到,获得积分10
1秒前
1秒前
十二发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
1秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
笨笨凡松完成签到 ,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
罐装可乐应助科研通管家采纳,获得10
3秒前
DDDD发布了新的文献求助10
3秒前
bkagyin应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
无花果应助QSNI采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
李健的小迷弟应助妮儿采纳,获得10
4秒前
姚美阁发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
啾咪应助郑阔采纳,获得10
4秒前
科研通AI5应助郑阔采纳,获得10
4秒前
yile完成签到,获得积分10
5秒前
渡月桥完成签到,获得积分10
5秒前
秦斌斌发布了新的文献求助10
5秒前
6秒前
mirai完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170925
求助须知:如何正确求助?哪些是违规求助? 4361441
关于积分的说明 13580035
捐赠科研通 4208762
什么是DOI,文献DOI怎么找? 2308541
邀请新用户注册赠送积分活动 1307829
关于科研通互助平台的介绍 1254658