亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning for Automated Triaging of Stable Chest Radiographs in a Follow-up Setting

医学 射线照相术 放射科 医学物理学
作者
Jihye Yun,Yura Ahn,Kyungjin Cho,Shugaku Oh,Sang Min Lee,Namkug Kim,Joon Beom Seo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:3
标识
DOI:10.1148/radiol.230606
摘要

Background Most artificial intelligence algorithms that interpret chest radiographs are restricted to an image from a single time point. However, in clinical practice, multiple radiographs are used for longitudinal follow-up, especially in intensive care units (ICUs). Purpose To develop and validate a deep learning algorithm using thoracic cage registration and subtraction to triage pairs of chest radiographs showing no change by using longitudinal follow-up data. Materials and Methods A deep learning algorithm was retrospectively developed using baseline and follow-up chest radiographs in adults from January 2011 to December 2018 at a tertiary referral hospital. Two thoracic radiologists reviewed randomly selected pairs of "change" and "no change" images to establish the ground truth, including normal or abnormal status. Algorithm performance was evaluated using area under the receiver operating characteristic curve (AUC) analysis in a validation set and temporally separated internal test sets (January 2019 to August 2021) from the emergency department (ED) and ICU. Threshold calibration for the test sets was conducted, and performance with 40% and 60% triage thresholds was assessed. Results This study included 3 304 996 chest radiographs in 329 036 patients (mean age, 59 years ± 14 [SD]; 170 433 male patients). The training set included 550 779 pairs of radiographs. The validation set included 1620 pairs (810 no change, 810 change). The test sets included 533 pairs (ED; 265 no change, 268 change) and 600 pairs (ICU; 310 no change, 290 change). The algorithm had AUCs of 0.77 (validation), 0.80 (ED), and 0.80 (ICU). With a 40% triage threshold, specificity was 88.4% (237 of 268 pairs) and 90.0% (261 of 290 pairs) in the ED and ICU, respectively. With a 60% triage threshold, specificity was 79.9% (214 of 268 pairs) and 79.3% (230 of 290 pairs) in the ED and ICU, respectively. For urgent findings (consolidation, pleural effusion, pneumothorax), specificity was 78.6%-100% (ED) and 85.5%-93.9% (ICU) with a 40% triage threshold. Conclusion The deep learning algorithm could triage pairs of chest radiographs showing no change while detecting urgent interval changes during longitudinal follow-up. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Czum in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
40秒前
45秒前
动物园小科畜完成签到,获得积分10
50秒前
烟花应助科研通管家采纳,获得10
1分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
1分钟前
CodeCraft应助shee采纳,获得10
1分钟前
2分钟前
2分钟前
离江发布了新的文献求助10
2分钟前
糊辣鱼完成签到 ,获得积分10
2分钟前
离江完成签到,获得积分10
2分钟前
聪慧海蓝完成签到 ,获得积分10
3分钟前
小白菜完成签到,获得积分10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Owen应助科研通管家采纳,获得10
7分钟前
欣欣完成签到,获得积分10
7分钟前
7分钟前
吃点水果保护局完成签到 ,获得积分10
7分钟前
ZXneuro完成签到,获得积分10
7分钟前
iShine完成签到 ,获得积分10
8分钟前
sea完成签到 ,获得积分10
8分钟前
8分钟前
小紫薯完成签到 ,获得积分10
8分钟前
daixan89完成签到 ,获得积分10
9分钟前
jxm完成签到 ,获得积分10
10分钟前
迟迟不吃吃完成签到 ,获得积分10
10分钟前
10分钟前
子春完成签到 ,获得积分10
10分钟前
seeyoung666发布了新的文献求助10
10分钟前
梅者如西完成签到,获得积分10
10分钟前
乐乐应助科研通管家采纳,获得10
11分钟前
冰糖雪梨完成签到 ,获得积分10
11分钟前
11分钟前
12分钟前
Kelly飞啊完成签到,获得积分10
12分钟前
余念安完成签到 ,获得积分10
12分钟前
胡先生完成签到,获得积分10
12分钟前
卡琳完成签到 ,获得积分10
13分钟前
CipherSage应助胡先生采纳,获得10
13分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782682
求助须知:如何正确求助?哪些是违规求助? 3328061
关于积分的说明 10234296
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670433
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758973