Deep Learning for Automated Triaging of Stable Chest Radiographs in a Follow-up Setting

医学 射线照相术 放射科 医学物理学
作者
Jihye Yun,Yura Ahn,Kyungjin Cho,Shugaku Oh,Sang Min Lee,Namkug Kim,Joon Beom Seo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:3
标识
DOI:10.1148/radiol.230606
摘要

Background Most artificial intelligence algorithms that interpret chest radiographs are restricted to an image from a single time point. However, in clinical practice, multiple radiographs are used for longitudinal follow-up, especially in intensive care units (ICUs). Purpose To develop and validate a deep learning algorithm using thoracic cage registration and subtraction to triage pairs of chest radiographs showing no change by using longitudinal follow-up data. Materials and Methods A deep learning algorithm was retrospectively developed using baseline and follow-up chest radiographs in adults from January 2011 to December 2018 at a tertiary referral hospital. Two thoracic radiologists reviewed randomly selected pairs of "change" and "no change" images to establish the ground truth, including normal or abnormal status. Algorithm performance was evaluated using area under the receiver operating characteristic curve (AUC) analysis in a validation set and temporally separated internal test sets (January 2019 to August 2021) from the emergency department (ED) and ICU. Threshold calibration for the test sets was conducted, and performance with 40% and 60% triage thresholds was assessed. Results This study included 3 304 996 chest radiographs in 329 036 patients (mean age, 59 years ± 14 [SD]; 170 433 male patients). The training set included 550 779 pairs of radiographs. The validation set included 1620 pairs (810 no change, 810 change). The test sets included 533 pairs (ED; 265 no change, 268 change) and 600 pairs (ICU; 310 no change, 290 change). The algorithm had AUCs of 0.77 (validation), 0.80 (ED), and 0.80 (ICU). With a 40% triage threshold, specificity was 88.4% (237 of 268 pairs) and 90.0% (261 of 290 pairs) in the ED and ICU, respectively. With a 60% triage threshold, specificity was 79.9% (214 of 268 pairs) and 79.3% (230 of 290 pairs) in the ED and ICU, respectively. For urgent findings (consolidation, pleural effusion, pneumothorax), specificity was 78.6%-100% (ED) and 85.5%-93.9% (ICU) with a 40% triage threshold. Conclusion The deep learning algorithm could triage pairs of chest radiographs showing no change while detecting urgent interval changes during longitudinal follow-up. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Czum in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhangll完成签到,获得积分10
2秒前
laohu完成签到,获得积分10
3秒前
yyj完成签到,获得积分10
4秒前
沉醉完成签到 ,获得积分10
5秒前
Allen完成签到,获得积分10
5秒前
...完成签到 ,获得积分0
5秒前
君儿和闪电完成签到 ,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
LAUXF应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
龙痕完成签到,获得积分10
5秒前
tuanheqi应助科研通管家采纳,获得50
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
8秒前
8秒前
了尘完成签到,获得积分10
9秒前
董卓小蛮腰完成签到,获得积分10
9秒前
爆米花应助读书的时候采纳,获得10
9秒前
自由如天完成签到,获得积分10
10秒前
欢呼的飞荷完成签到 ,获得积分10
10秒前
yongziwu完成签到,获得积分10
11秒前
二七发布了新的文献求助10
12秒前
12秒前
黄瓜橙橙完成签到,获得积分10
12秒前
赖奇完成签到,获得积分10
13秒前
壮观的海豚完成签到 ,获得积分10
13秒前
nater4ver完成签到,获得积分10
14秒前
章鱼小丸子完成签到 ,获得积分10
14秒前
14秒前
Aloha完成签到 ,获得积分10
15秒前
DAVE完成签到,获得积分10
15秒前
jimmyhui完成签到,获得积分10
16秒前
RYAN完成签到 ,获得积分10
17秒前
桃子发布了新的文献求助10
18秒前
任性半凡完成签到,获得积分10
19秒前
faye完成签到,获得积分10
20秒前
scc完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030355
求助须知:如何正确求助?哪些是违规求助? 3569113
关于积分的说明 11356691
捐赠科研通 3299693
什么是DOI,文献DOI怎么找? 1816873
邀请新用户注册赠送积分活动 890973
科研通“疑难数据库(出版商)”最低求助积分说明 813978