Modeling and monitoring multilayer attributed weighted directed networks via a generative model

计算机科学 图表 数据挖掘 生成模型 网络模型 贝叶斯定理 最大化 序列(生物学) 算法 机器学习 人工智能 生成语法 数学优化 统计 数学 贝叶斯概率 遗传学 生物
作者
Hao Wu,Qiao Liang,Kaibo Wang
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:: 1-13
标识
DOI:10.1080/24725854.2023.2256369
摘要

AbstractAs data with network structures are widely seen in diverse applications, the modeling and monitoring of network data have drawn considerable attention in recent years. When individuals in a network have multiple types of interactions, a multilayer network model should be considered to better characterize its behavior. Most existing network models have concentrated on characterizing the topological structure among individuals, and important attributes of individuals are largely disregarded in existing works. In this article, first, we propose a unified static Network Generative Model (static-NGM), which incorporates individual attributes in network topology modeling. The proposed model can be utilized for a general multilayer network with weighted and directed edges. A variational expectation maximization algorithm is developed to estimate model parameters. Second, to characterize the time-dependent property of a network sequence and perform network monitoring, we extend the static-NGM model to a sequential version, namely, the sequential-NGM model, with the Markov assumption. Last, a sequential-NGM chart is developed to detect shifts and identify root causes of shifts in a network sequence. Extensive simulation experiments show that considering attributes improves the parameter estimation accuracy and that the proposed monitoring method also outperforms the three competitive approaches, static-NGM chart, score test-based chart (ST chart) and Bayes factor-based chart (BF chart), in both shift detection and root cause diagnosis. We also perform a case study with Enron E-mail data; the results further validate the proposed method.Keywords: Generative modelmultilayer attributed networkroot cause diagnosisstatistical process control AcknowledgmentsThe authors greatly thank the Department Editor, the Associate Editor and anonymous referees for their helpful comments and suggestions, which have helped us improve this work greatly.Data availability statementThe data that support the findings of this study are openly available at http://www.cs.cmu.edu/∼enron/Additional informationFundingDr. Wang’s work was supported by the Key Program of the National Natural Science Foundation of China under Grant No. 71932006. Dr. Liang’s work was supported by the National Natural Science Foundation of China under Grant No. 72201212.Notes on contributorsHao WuHao Wu is currently a PhD student at Department of Industrial Engineering, Tsinghua University. He received his BS degree in industrial engineering from Tsinghua University in 2021. His research focuses on network system modeling and monitoring.Qiao LiangQiao Liang is currently an assistant professor in the School of Statistics, Southwestern University of Finance and Economics, Chengdu, China. She received her PhD and BS degrees in industrial engineering from Tsinghua University, Beijing, China. Her research interests are in the areas of statistical modeling and data analytics for manufacturing and service processes, with a focus on statistical process control based on text analytics.Kaibo WangKaibo Wang is a professor in the Department of Industrial Engineering, jointly appointed by the Vanke School of Public Health, Tsinghua University, Beijing, China. He received his BS and MS degrees in mechatronics from Xi’an Jiaotong University, Xi’an, China, and his PhD in industrial engineering and engineering management from the Hong Kong University of Science and Technology, Hong Kong. His research focuses on statistical quality control and data-driven system modelling, monitoring, diagnosis, and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
含蓄的小鸽子完成签到 ,获得积分10
3秒前
zhou默完成签到,获得积分10
4秒前
6秒前
8秒前
8秒前
贪玩的醉柳完成签到,获得积分10
8秒前
guaner发布了新的文献求助20
9秒前
踏实机器猫完成签到 ,获得积分10
9秒前
Xk发布了新的文献求助10
12秒前
dd完成签到 ,获得积分10
12秒前
14秒前
张一完成签到,获得积分10
14秒前
78888完成签到 ,获得积分10
14秒前
15秒前
xia发布了新的文献求助10
15秒前
xuexixiaojin完成签到 ,获得积分10
15秒前
芊芊完成签到 ,获得积分0
16秒前
16秒前
17秒前
shen完成签到 ,获得积分10
17秒前
李欣华发布了新的文献求助30
18秒前
乐小子完成签到,获得积分10
18秒前
我是老大应助Xk采纳,获得10
20秒前
静静发布了新的文献求助10
22秒前
科目三应助张一采纳,获得30
22秒前
归尘发布了新的文献求助10
23秒前
李梓航完成签到 ,获得积分10
23秒前
25秒前
lgold完成签到,获得积分10
25秒前
Ztx完成签到,获得积分10
25秒前
挚智完成签到 ,获得积分10
27秒前
yfe完成签到,获得积分10
28秒前
背后枕头完成签到,获得积分10
31秒前
aylwtt完成签到,获得积分10
32秒前
33秒前
儒雅八宝粥完成签到 ,获得积分10
36秒前
xh93完成签到,获得积分10
37秒前
41发布了新的文献求助10
39秒前
lixiao完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4775730
求助须知:如何正确求助?哪些是违规求助? 4107894
关于积分的说明 12707083
捐赠科研通 3829012
什么是DOI,文献DOI怎么找? 2112390
邀请新用户注册赠送积分活动 1136215
关于科研通互助平台的介绍 1019898