AATSN: Anatomy Aware Tumor Segmentation Network for PET-CT volumes and images using a lightweight fusion-attention mechanism

计算机科学 分割 人工智能 背景(考古学) 正电子发射断层摄影术 掷骰子 融合机制 深度学习 模式识别(心理学) 融合 核医学 医学 语言学 哲学 古生物学 几何学 数学 脂质双层融合 生物
作者
Ibtihaj Ahmad,Yong Xia,Hengfei Cui,Zain Ul Islam
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106748-106748 被引量:14
标识
DOI:10.1016/j.compbiomed.2023.106748
摘要

Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) provides metabolic information, while Computed Tomography (CT) provides the anatomical context of the tumors. Combined PET-CT segmentation helps in computer-assisted tumor diagnosis, staging, and treatment planning. Current state-of-the-art models mainly rely on early or late fusion techniques. These methods, however, rarely learn PET-CT complementary features and cannot efficiently co-relate anatomical and metabolic features. These drawbacks can be removed by intermediate fusion; however, it produces inaccurate segmentations in the case of heterogeneous textures in the modalities. Furthermore, it requires massive computation. In this work, we propose AATSN (Anatomy Aware Tumor Segmentation Network), which extracts anatomical CT features, and then intermediately fuses with PET features through a fusion-attention mechanism. Our anatomy-aware fusion-attention mechanism fuses the selective useful CT and PET features instead of fusing the full features set. Thus this not only improves the network performance but also requires lesser resources. Furthermore, our model is scalable to 2D images and 3D volumes. The proposed model is rigorously trained, tested, evaluated, and compared to the state-of-the-art through several ablation studies on the largest available datasets. We have achieved a 0.8104 dice score and 2.11 median HD95 score in a 3D setup, while 0.6756 dice score in a 2D setup. We demonstrate that AATSN achieves a significant performance gain while being lightweight at the same time compared to the state-of-the-art methods. The implications of AATSN include improved tumor delineation for diagnosis, analysis, and radiotherapy treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
临诗发布了新的文献求助10
3秒前
Ms_Galaxea完成签到,获得积分10
6秒前
7秒前
柒柒完成签到,获得积分10
8秒前
科研通AI5应助我是楠个谁采纳,获得10
11秒前
xiaopan9083发布了新的文献求助10
13秒前
13秒前
Zz完成签到,获得积分10
15秒前
16秒前
三三四完成签到,获得积分10
17秒前
淡然靖柔发布了新的文献求助10
19秒前
情怀应助爱听歌笑寒采纳,获得10
20秒前
21秒前
完美世界应助长情的昊焱采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
归尘应助科研通管家采纳,获得10
23秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
24秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
bc应助科研通管家采纳,获得30
24秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
25秒前
xiaopan9083完成签到,获得积分10
25秒前
个性的紫菜应助临诗采纳,获得50
26秒前
Cherry发布了新的文献求助10
29秒前
31秒前
31秒前
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385