医学
早晨
腰痛
腰椎
磁共振成像
气温日变化
核医学
傍晚
解剖
内科学
病理
放射科
物理
地质学
大气科学
替代医学
天文
作者
Chanyuan Liu,Jun Ran,John N. Morelli,Bowen Hou,Yitong Li,Xiaoming Li
标识
DOI:10.1016/j.ejrad.2023.110712
摘要
To prospectively investigate the determinants of diurnal variations in lumbar intervertebral discs and paraspinal muscles.71 females aged 19 ∼ 31 years were examined by morning-evening T2 mapping/diffusion kurtosis imaging (DKI), with weight and lifestyle information (time in night bed-rest [TIB], bed-napping, activity time, and sitting time) assessed by standardized questionnaires. Diurnal shifts in T2, mean diffusivity and mean kurtosis (T2-DS, MD-DS and MK-DS; morning-value minus evening-value) were evaluated for L4-S1 discs (normal, Pfirrmann grade Ⅰ/Ⅱ; degenerative, III/IV). T2 and T2-DS were assessed for L4/5 multifidus and erector spinalis.For normal discs, bed-napping correlated with MD-DS and MK-DS in disc entirety (p = 0.001 and 0.004); increased activity time suggested higher T2-DS in nucleus pulposus (p = 0.004); prolonged sitting time predicted greater T2-DS in disc entirety and posterior inner annulus fibrosus (PI-AF, p ≤ 0.011); decreased TIB and weight suggested lower T2-DS and higher MK-DS in PI-AF (p = 0.001 ∼ 0.035). For degenerative discs, bed-napping predicted lower T2-DS in nucleus pulposus and PI-AF (p = 0.019); increased TIBsuggested higher T2-DS and lower MK-DS in PI-AF (p = 0.006 and 0.034); longer sitting time predicted higher MK-DS in PI-AF (p = 0.020). Paraspinal muscles exhibited diurnal T2 variation (p < 0.001) which did not correlate with lifestyle factors (p > 0.050).Lifestyle and weight have causal effects on the diurnal variation of lumbar discs. Bed-rest may correlate with disc hydration and microstructural stability reserves for subsequent daytime activities. Sitting behavior could induce greater dehydration in normal discs and may alleviate diurnal microstructural rearrangement in degenerative discs. T2 mapping and DKI are promising tools to evaluate disc biomechanics in clinics.
科研通智能强力驱动
Strongly Powered by AbleSci AI