Flowerbed-Inspired Biomimetic Scaffold with Rapid Internal Tissue Infiltration and Vascularization Capacity for Bone Repair

脚手架 纳米纤维 材料科学 生物医学工程 静电纺丝 骨愈合 再生(生物学) 聚己内酯 生物相容性 骨组织 组织工程 纳米技术 细胞生物学 解剖 复合材料 医学 生物 冶金 聚合物
作者
Xiaojun Zhou,Yuhan Qian,Liang Chen,Tao Li,Xin Sun,Xiaojun Ma,Jinwu Wang,Chuanglong He
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (5): 5140-5156 被引量:50
标识
DOI:10.1021/acsnano.3c00598
摘要

The favorable microstructure and bioactivity of tissue-engineered bone scaffolds are closely associated with the regenerative efficacy of bone defects. For the treatment of large bone defects, however, most of them fail to meet requirements such as adequate mechanical strength, highly porous structure, and excellent angiogenic and osteogenic activities. Herein, inspired by the characteristics of a "flowerbed", we construct a short nanofiber aggregates-enriched dual-factor delivery scaffold via 3D printing and electrospinning techniques for guiding vascularized bone regeneration. By the assembly of short nanofibers containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles with a 3D printed strontium-contained hydroxyapatite/polycaprolactone (SrHA@PCL) scaffold, an adjustable porous structure can be easily realized by changing the density of nanofibers, while strong compressive strength will be acquired due to the framework role of SrHA@PCL. Owing to the different degradation performance between electrospun nanofibers and 3D printed microfilaments, a sequential release behavior of DMOG and Sr ions is achieved. Both in vivo and in vitro results demonstrate that the dual-factor delivery scaffold has excellent biocompatibility, significantly promotes angiogenesis and osteogenesis by stimulating endothelial cells and osteoblasts, and effectively accelerates tissue ingrowth and vascularized bone regeneration through activating the hypoxia inducible factor-1α pathway and immunoregulatory effect. Overall, this study has provided a promising strategy for constructing a bone microenvironment-matched biomimetic scaffold for bone regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柏特瑞发布了新的文献求助10
1秒前
舒心莫言完成签到,获得积分10
2秒前
Fearlessj完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
是毛果芸香碱完成签到,获得积分10
4秒前
胖仔完成签到,获得积分10
6秒前
夏侯德东发布了新的文献求助10
6秒前
迟梦完成签到,获得积分10
6秒前
梦亦非完成签到 ,获得积分10
6秒前
端庄的夏蓉完成签到,获得积分10
7秒前
宋行远完成签到,获得积分10
7秒前
韩威完成签到,获得积分20
8秒前
zhongu发布了新的文献求助10
8秒前
圆圆发布了新的文献求助10
8秒前
8秒前
LiuYing发布了新的文献求助10
9秒前
Aiden完成签到,获得积分10
9秒前
WW完成签到,获得积分10
9秒前
慕容雅柏完成签到 ,获得积分10
9秒前
徐大夫完成签到,获得积分10
10秒前
啊建完成签到 ,获得积分10
11秒前
11秒前
赘婿应助洁净的锦程采纳,获得10
11秒前
lxz完成签到,获得积分10
12秒前
cpy完成签到,获得积分20
12秒前
12秒前
13秒前
叶芴完成签到,获得积分10
13秒前
gjww应助Rookie采纳,获得10
14秒前
圆圆完成签到,获得积分20
15秒前
15秒前
mascot0111完成签到,获得积分10
16秒前
大模型应助yy采纳,获得10
17秒前
17秒前
993494543发布了新的文献求助10
18秒前
GUKGO完成签到,获得积分10
18秒前
叶芴发布了新的文献求助10
18秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
薩提亞模式團體方案對青年情侶輔導效果之研究 400
3X3 Basketball: Everything You Need to Know 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2387865
求助须知:如何正确求助?哪些是违规求助? 2094376
关于积分的说明 5272747
捐赠科研通 1821076
什么是DOI,文献DOI怎么找? 908483
版权声明 559300
科研通“疑难数据库(出版商)”最低求助积分说明 485355