估计员
随机波动
波动性(金融)
赫斯顿模型
二次变异
长记忆
计量经济学
已实现方差
蒙特卡罗方法
二次方程
差异(会计)
数学
计算机科学
统计物理学
应用数学
统计
经济
SABR波动模型
物理
几何学
会计
布朗运动
作者
Gilles de Truchis,Bernard Desgraupes,Elena-Ivona Dumitrescu
出处
期刊:Econometric Reviews
日期:2024-11-06
卷期号:44 (3): 275-311
被引量:1
标识
DOI:10.1080/07474938.2024.2409475
摘要
We derive a new fractional Heston model with self-exciting jumps. We study volatility persistence and demonstrate that the quadratic variation necessarily exhibits less memory than the integrated variance, which preserves the degree of long-memory of the instantaneous volatility. Focusing on realized volatility measures, we find that traditional long-memory estimators are dramatically downward biased, in particular for low-frequency intraday sampling. Conveniently, our Monte Carlo experiments reveal that some noise-robust local Whittle-type estimators offer good finite sample properties. We apply our theoretical results in a risk forecasting study and show that our frequency-domain forecasting procedure outperforms the traditional benchmark models.
科研通智能强力驱动
Strongly Powered by AbleSci AI