Thermoelectric Material Performance (zT) Predictions with Machine Learning

材料科学 热电效应 热电材料 工程物理 纳米技术 复合材料 热导率 热力学 物理 工程类
作者
Nikhil K. Barua,Sangjoon Lee,Anton O. Oliynyk,Holger Kleinke
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (1): 1662-1673
标识
DOI:10.1021/acsami.4c19149
摘要

Research efforts using the tools in machine- and deep learning models have begun to show success in predicting target properties such as thermoelectric (TE) properties, including the figure of merit (zT). These models were trained on various data sources that used experimental, crystallographic, and density functional theory (DFT) data. We developed an interpretable model on a huge experimental data set of ∼160,000 data points to predict the performance of thermoelectric materials. The model predicts the results of three different test sets with high accuracy, such as the root-mean-square error (RMSE) ranging from 0.15 to 0.20 and the evaluation coefficients (R2) ranging from 0.80 to 0.67. Furthermore, we highlight probable reasons such as literature error, varied synthesis routes for the same material, different forms of crystallinity and morphology, and different particle sizes and densities for the deviation of predicted zT from the experimental zT results of the test sets. Lastly, using an experimental data set, our study is one of the few examples that predict a complex zT property directly across the entire gamut of TE materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shumin发布了新的文献求助10
1秒前
望北楼主发布了新的文献求助10
2秒前
无限的薄荷完成签到,获得积分10
2秒前
领导范儿应助YP采纳,获得10
3秒前
顾矜应助cldg采纳,获得10
4秒前
丘比特应助大马哈鱼采纳,获得10
4秒前
humble完成签到 ,获得积分10
4秒前
唐咩咩咩发布了新的文献求助10
4秒前
5秒前
挚zhi发布了新的文献求助10
5秒前
7秒前
弓长三金完成签到,获得积分10
7秒前
memo完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
南京必吃完成签到,获得积分10
11秒前
久久应助自信机器猫采纳,获得10
11秒前
Lucky完成签到,获得积分10
13秒前
欢喜海完成签到,获得积分20
15秒前
大马哈鱼发布了新的文献求助10
17秒前
omega完成签到 ,获得积分10
17秒前
三岁居居发布了新的文献求助10
18秒前
sunbigfly完成签到,获得积分10
19秒前
20秒前
21秒前
唐咩咩咩完成签到,获得积分10
23秒前
LY完成签到,获得积分20
23秒前
王三石完成签到,获得积分0
23秒前
一五完成签到,获得积分10
24秒前
科研通AI5应助小钱钱采纳,获得10
25秒前
25秒前
25秒前
失眠醉易应助三岁居居采纳,获得10
25秒前
万能图书馆应助三岁居居采纳,获得10
25秒前
优秀的石头完成签到,获得积分10
26秒前
在封我就急眼啦完成签到,获得积分10
26秒前
Lucas应助yulk采纳,获得10
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789363
求助须知:如何正确求助?哪些是违规求助? 3334368
关于积分的说明 10269614
捐赠科研通 3050834
什么是DOI,文献DOI怎么找? 1674175
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693