Breast radiation therapy fluence painting with multi‐agent deep reinforcement learning

放射治疗 强化学习 医学物理学 通量 医学 人工智能 计算机科学 辐照 放射科 物理 核物理学
作者
Yang Dongrong,Xinyi Li,Yoo Sua,Blitzblau Rachel,M Molineaux Susan,Stephens Sarah,Santanu Paul,Wu Q. Jackie,Sheng Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17615
摘要

The electronic compensation (ECOMP) technique for breast radiation therapy provides excellent dose conformity and homogeneity. However, the manual fluence painting process presents a challenge for efficient clinical operation. To facilitate the clinical treatment planning automation of breast radiation therapy, we utilized reinforcement learning (RL) to develop an auto-planning tool that iteratively edits the fluence maps under the guidance of clinically relevant objectives. With institutional review board (IRB) approval, 70 patients treated with 6MV tangential photon beams with ECOMP technique were retrospectively collected and included in this study (20/50 for training/testing). Each pixel in the fluence map was assigned a reinforcement learning agent to perform independent action. Beam-eye-view projected dose profiles were generated to form state information as the input of the RL network. By predicting the Q value, pixel-wise actions were selected to modify specific pixel value in the fluence maps to improve overall plan quality. After dose calculation, reward signal calculated from the variation of target coverage and dose homogeneity was fed back to the RL framework and used to update network parameters. The RL generated plans were evaluated with dose distribution and dosimetric endpoints (i.e., Breast PTV V90%, Breast PTV V95%, Breast PTV V105%, Lung V20 Gy, Heart V5 Gy, Dmax) and compared with clinical plans. The RL agent took around 90 s to generate a ECOMP treatment plan. The RL plans exhibited plan quality comparable to clinical plans in terms of isodose distribution and dosimetric endpoints. The mean Breast PTV V95%, Breast PTV V105% of RL plans are 77.759%(±8.904%)$77.759{\mathrm{\ \% }}( { \pm 8.904{\mathrm{\ \% }}} )$ and 8.522cc(±11.469cc)$8.522{\mathrm{\ cc\ }}( { \pm 11.469{\mathrm{\ cc}}} )$ , compared to 78.568%(±9.094%)$78.568{\mathrm{\ \% }}( { \pm 9.094{\mathrm{\ \% }}} )$ and 34.298cc(±36.297cc)$34.298\ {\mathrm{cc}}\ ( { \pm 36.297{\mathrm{\ cc}}} )$ cc of clinical plans. The developed RL framework efficiently generates breast ECOMP plans with clinical acceptable plan quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一一一发布了新的文献求助10
2秒前
只喝白开水完成签到,获得积分10
5秒前
太酷啦啦啦完成签到,获得积分10
7秒前
syy完成签到,获得积分10
9秒前
YSY完成签到,获得积分10
9秒前
湖湖发布了新的文献求助10
9秒前
10秒前
一一一一完成签到,获得积分20
10秒前
10秒前
10秒前
11秒前
天荷完成签到,获得积分10
13秒前
眼睛大雨筠应助xiaodaiaa采纳,获得100
14秒前
ID27149发布了新的文献求助10
14秒前
未来余主任完成签到,获得积分10
14秒前
15秒前
杨玉轩发布了新的文献求助10
15秒前
酷波er应助hetao采纳,获得100
15秒前
16秒前
龙弟弟发布了新的文献求助10
17秒前
18秒前
英勇的沛春完成签到 ,获得积分10
18秒前
18秒前
隔壁老黄发布了新的文献求助10
20秒前
YH应助科研通管家采纳,获得100
20秒前
water应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
飞天奶酪完成签到 ,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
21秒前
大模型应助科研通管家采纳,获得10
21秒前
water应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得20
21秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
猪猪hero应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916263
求助须知:如何正确求助?哪些是违规求助? 3461779
关于积分的说明 10918925
捐赠科研通 3188596
什么是DOI,文献DOI怎么找? 1762727
邀请新用户注册赠送积分活动 853123
科研通“疑难数据库(出版商)”最低求助积分说明 793649