Quantum Dynamics of Machine Learning

动力学(音乐) 量子 量子动力学 统计物理学 计算机科学 物理 心理学 量子力学 教育学
作者
Peng Wang,Maimaitiniyazi Maimaitiabudula
出处
期刊:Chinese Physics [Science Press]
卷期号:74 (6)
标识
DOI:10.7498/aps.74.20240999
摘要

To address the current lack of rigorous theoretical models in the machine learning process, this paper adopts the quantum dynamic method to model the iterative motion process of machine learning based on the principles of first-principles thinking. This approach treats the iterative evolution of algorithms as a physical motion process, defines a generalized objective function in the parameter space of machine learning algorithms, and views the iterative process of machine learning as the process of seeking the optimal value for this generalized objective function. In physical terms, this process corresponds to the system reaching its ground energy state. Since the dynamic equation of a quantum system is the Schrödinger equation, by treating the generalized objective function as the potential energy term in the Schrödinger equation, we can obtain the quantum dynamic equation that describes the iterative process of machine learning. The process of machine learning is thus the process of seeking the ground energy state of the quantum system constrained by a generalized objective function. The quantum dynamic equation for machine learning transforms the iterative process into a time-dependent partial differential equation for precise mathematical representation, allowing for the study of the iterative process of machine learning using physical and mathematical theories. This provides theoretical support for implementing the iterative process of machine learning using quantum computers. To further apply the quantum dynamic equation to explain the iterative process of machine learning on classical computers, the Wick rotation is used to convert the quantum dynamic equation into a thermodynamic equation, demonstrating the convergence of the time evolution process in machine learning. As time approaches infinity, the system will converge to the ground energy state. Since an analytical expression cannot be given for the generalized objective function in the parameter space, Taylor expansion is used to approximate the generalized objective function. Under the zero-order Taylor approximation of the generalized objective function, the quantum dynamic equation and thermodynamic equation for machine learning degrade into the free-particle equation and diffusion equation, respectively. This result indicates that the most basic dynamic processes during the iteration of machine learning on quantum and classical computers are wave packet dispersion and diffusion, respectively. This result explains, from a dynamic perspective, the basic principles of diffusion models that have been successfully applied in the field of generative neural networks in recent years. Diffusion models indirectly realize the thermal diffusion process in the parameter space by adding and removing Gaussian noise to images, thereby optimizing the generalized objective function in the parameter space. The diffusion process is the dynamic process under the zero-order approximation of the generalized objective function. Meanwhile, using the thermodynamic equation of machine learning, we also derived the Softmax and Sigmoid functions commonly used in artificial intelligence. These results show that the quantum dynamic method is an effective theoretical approach for studying the iterative process of machine learning, providing rigorous mathematical and physical models for studying the iterative process of machine learning on both quantum and classical computers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮的凝竹完成签到,获得积分10
1秒前
椰椰完成签到 ,获得积分10
1秒前
2秒前
xin完成签到,获得积分10
4秒前
无辜问枫完成签到,获得积分10
7秒前
7秒前
M跃完成签到,获得积分10
8秒前
9秒前
腼腆的傲薇完成签到 ,获得积分10
11秒前
赘婿应助佳仔采纳,获得10
12秒前
chenjunan发布了新的文献求助10
13秒前
dachemaitu发布了新的文献求助20
13秒前
研友_VZG7GZ应助Khr1stINK采纳,获得10
14秒前
悦耳从彤完成签到,获得积分10
14秒前
Awalong完成签到,获得积分20
14秒前
叶音竹发布了新的文献求助10
14秒前
思睿拜完成签到 ,获得积分10
15秒前
不安雁菱完成签到,获得积分10
17秒前
背后的以松完成签到,获得积分20
17秒前
Q0关闭了Q0文献求助
18秒前
wanci应助噜噜采纳,获得10
19秒前
21秒前
22秒前
22秒前
善学以致用应助云_123采纳,获得10
23秒前
叶音竹完成签到,获得积分10
23秒前
干羞花发布了新的文献求助10
25秒前
chenjunan完成签到,获得积分10
26秒前
26秒前
甜美紫菜发布了新的文献求助10
27秒前
凶狠的盼柳完成签到,获得积分10
27秒前
把的蛮耐得烦完成签到,获得积分10
27秒前
CodeCraft应助LDDD采纳,获得10
30秒前
我心向明月完成签到,获得积分10
31秒前
31秒前
tgytc发布了新的文献求助100
33秒前
33秒前
SYLH应助刘松采纳,获得10
34秒前
SYLH应助刘松采纳,获得10
34秒前
34秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825763
求助须知:如何正确求助?哪些是违规求助? 3367969
关于积分的说明 10448566
捐赠科研通 3087423
什么是DOI,文献DOI怎么找? 1698676
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973