亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantum Dynamics of Machine Learning

动力学(音乐) 量子 量子动力学 统计物理学 计算机科学 物理 心理学 量子力学 教育学
作者
Peng Wang,Maimaitiniyazi Maimaitiabudula
出处
期刊:Chinese Physics [Science Press]
卷期号:74 (6)
标识
DOI:10.7498/aps.74.20240999
摘要

To address the current lack of rigorous theoretical models in the machine learning process, this paper adopts the quantum dynamic method to model the iterative motion process of machine learning based on the principles of first-principles thinking. This approach treats the iterative evolution of algorithms as a physical motion process, defines a generalized objective function in the parameter space of machine learning algorithms, and views the iterative process of machine learning as the process of seeking the optimal value for this generalized objective function. In physical terms, this process corresponds to the system reaching its ground energy state. Since the dynamic equation of a quantum system is the Schrödinger equation, by treating the generalized objective function as the potential energy term in the Schrödinger equation, we can obtain the quantum dynamic equation that describes the iterative process of machine learning. The process of machine learning is thus the process of seeking the ground energy state of the quantum system constrained by a generalized objective function. The quantum dynamic equation for machine learning transforms the iterative process into a time-dependent partial differential equation for precise mathematical representation, allowing for the study of the iterative process of machine learning using physical and mathematical theories. This provides theoretical support for implementing the iterative process of machine learning using quantum computers. To further apply the quantum dynamic equation to explain the iterative process of machine learning on classical computers, the Wick rotation is used to convert the quantum dynamic equation into a thermodynamic equation, demonstrating the convergence of the time evolution process in machine learning. As time approaches infinity, the system will converge to the ground energy state. Since an analytical expression cannot be given for the generalized objective function in the parameter space, Taylor expansion is used to approximate the generalized objective function. Under the zero-order Taylor approximation of the generalized objective function, the quantum dynamic equation and thermodynamic equation for machine learning degrade into the free-particle equation and diffusion equation, respectively. This result indicates that the most basic dynamic processes during the iteration of machine learning on quantum and classical computers are wave packet dispersion and diffusion, respectively. This result explains, from a dynamic perspective, the basic principles of diffusion models that have been successfully applied in the field of generative neural networks in recent years. Diffusion models indirectly realize the thermal diffusion process in the parameter space by adding and removing Gaussian noise to images, thereby optimizing the generalized objective function in the parameter space. The diffusion process is the dynamic process under the zero-order approximation of the generalized objective function. Meanwhile, using the thermodynamic equation of machine learning, we also derived the Softmax and Sigmoid functions commonly used in artificial intelligence. These results show that the quantum dynamic method is an effective theoretical approach for studying the iterative process of machine learning, providing rigorous mathematical and physical models for studying the iterative process of machine learning on both quantum and classical computers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听汉堡发布了新的文献求助30
4秒前
ardoroso完成签到 ,获得积分10
9秒前
润泽完成签到,获得积分10
11秒前
逮劳完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
14秒前
Yiran555完成签到,获得积分10
14秒前
22秒前
22秒前
罗杰完成签到,获得积分10
23秒前
滴迪氐媂完成签到 ,获得积分10
24秒前
xiaozhang发布了新的文献求助10
28秒前
29秒前
47秒前
小闫同学完成签到 ,获得积分10
50秒前
Yiran555发布了新的文献求助30
53秒前
56秒前
小白加油完成签到 ,获得积分10
1分钟前
遗忘完成签到,获得积分10
1分钟前
是大胖子呀完成签到,获得积分10
1分钟前
徐志豪完成签到,获得积分20
1分钟前
Yuan完成签到 ,获得积分10
1分钟前
田様应助是大胖子呀采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
小唐发布了新的文献求助10
1分钟前
传奇3应助默默的书蕾采纳,获得10
1分钟前
kepwake发布了新的文献求助10
1分钟前
Wayne完成签到,获得积分10
1分钟前
小唐完成签到,获得积分20
1分钟前
kepwake完成签到,获得积分10
1分钟前
淡淡菠萝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小艺发布了新的文献求助10
1分钟前
Rla发布了新的文献求助10
2分钟前
可乐发布了新的文献求助10
2分钟前
阿梅梅梅完成签到,获得积分10
2分钟前
wop111应助小艺采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4888831
求助须知:如何正确求助?哪些是违规求助? 4173163
关于积分的说明 12951657
捐赠科研通 3934352
什么是DOI,文献DOI怎么找? 2158767
邀请新用户注册赠送积分活动 1177027
关于科研通互助平台的介绍 1081434