清脆的
亚科
基因组编辑
生物
遗传学
基因
Cas9
计算生物学
作者
Shufen Zhou,Dagang Tian,Huaqing Liu,Xi Lü,Di Zhang,Rui Chen,Shaohua Yang,Weiren Wu,Feng Wang
摘要
The CRISPR/Cas9 system offers a powerful tool for gene editing to enhance rice productivity. In this study, we successfully edited eight RR-TZF genes in japonica rice Nipponbare using CRISPR-Cas9 technology, achieving a high editing efficiency of 73.8%. Sequencing revealed predominantly short insertions or deletions near the PAM sequence, along with multi-base deletions often flanked by identical bases. Off-target analysis identified 5 out of 31 predicted sites, suggesting the potential for off-target effects, which can be mitigated by designing gRNAs with more than three base mismatches. Notably, new mutations emerged in the progeny of several gene-edited mutants, indicating inheritable genetic mutagenicity. Phenotypic analysis of homozygous mutants revealed varied agronomic traits, even within the same gene, highlighting the complexity of gene-editing outcomes. These findings underscore the importance of backcrossing to minimize off-target and inheritable mutagenicity effects, ensuring more accurate trait evaluation. This study offers insights into CRISPR/Cas9 mechanisms and uncertain factors and may inform future strategies for rice improvement, prompting further research into CRISPR/Cas9's precision and long-term impacts.
科研通智能强力驱动
Strongly Powered by AbleSci AI