Multivariate analysis of Raman spectra for discriminating human collagens: In vitro identification of extracellular matrix collagens produced by an osteosarcoma cell line
The NHS spends £4.3 billion annually to address musculoskeletal conditions, encompassing age-related bone disorders like osteoarthritis and osteoporosis. Traditional X-ray diagnostic methods are commonly employed for bone disorder diagnosis, primarily assessing gross anatomical bone structure changes. However, these methods are unable to identify subtle biochemical alterations within the bone. More detailed information, particularly about protein changes, may lead to enhanced diagnostics and treatment. Raman spectroscopy is a non-invasive, laser-based technique capable of detecting changes in the collagen component of bone. Despite its long-standing application in discerning mineral and protein changes within bone, there is limited evidence on Raman spectral signatures of purified human collagens and their differentiation. This study aimed to test the hypothesis that Raman spectroscopy could detect different types of collagen in the human body.