Facet-Engineered Copper Electrocatalysts Enable Sustainable NADH Regeneration with High Efficiency

化学 NAD+激酶 选择性 辅因子 电化学 吸附 电极 无机化学 结晶学 催化作用 物理化学 有机化学
作者
Shuo Sun,Yizhou Wu,Yunxuan Ding,Linqin Wang,Xing Cao,Licheng Sun
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (19): 16630-16641 被引量:1
标识
DOI:10.1021/jacs.5c04431
摘要

Electrochemical regeneration of the nicotinamide cofactor (NADH) provides a sustainable approach to enzymatic reactions. However, the low productivity and selectivity of bioactive 1,4-NADH limit its broad applications. The hydrogenation of NAD+ to 1,4-NADH at the electrode surface is strongly coupled to the conformation of adsorbed NAD*, the formation of adsorbed hydrogen (Had), and the Had transfer to NAD*. Therefore, searching for materials with a suitable NAD* conformation, low Had formation energy, and rapid NAD* hydrogenation becomes a key task for the research. In this study, the (111) facet of Cu was found to exhibit a higher 1,4-NADH selectivity of 86.4%, compared to 50.4% and 57.4% for (100) and (110) facets, respectively. Density functional theory (DFT) calculations revealed that the high selectivity of Cu(111) stemmed from the favorable conformation of adsorbed NAD* and the reduced hydrogenation barrier. Subsequently, a Cu nanowire electrode with a (111)-dominant surface and abundant grain boundaries, Cugb(111), was constructed. Electrochemical kinetic analysis and DFT calculations demonstrated that the grain boundaries reduce the reaction barrier of Had formation. A record-high 1,4-NADH productivity of 73.5 μmol h-1 cm-2 was achieved by Cugb(111), while the 1,4-NADH selectivity was well-maintained at 84.7%. This study elucidates the effects of crystal facets and grain boundaries on regulating the selectivity and productivity of 1,4-NADH, providing a pathway for renewable energy-powered, high-efficiency green biomanufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解寄灵发布了新的文献求助10
刚刚
康康完成签到,获得积分10
1秒前
humaning完成签到,获得积分10
2秒前
5秒前
10秒前
leaolf应助小白采纳,获得20
12秒前
13秒前
标致胡萝卜完成签到 ,获得积分10
14秒前
领导范儿应助科研通管家采纳,获得30
14秒前
科目三应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
pcr163应助科研通管家采纳,获得150
15秒前
无花果应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Ao_Jiang完成签到,获得积分10
15秒前
别闹闹完成签到 ,获得积分10
18秒前
benxiaohai完成签到,获得积分0
21秒前
科研通AI6应助jiashan采纳,获得10
21秒前
perfumei完成签到,获得积分10
21秒前
kanwenxian完成签到,获得积分10
22秒前
xunuo完成签到,获得积分10
25秒前
26秒前
小二郎应助含蓄的荔枝采纳,获得10
28秒前
31秒前
左丘白桃发布了新的文献求助80
31秒前
吴1完成签到,获得积分10
33秒前
能干的荆完成签到 ,获得积分10
34秒前
39秒前
39秒前
多喝热水发布了新的文献求助10
43秒前
花肠完成签到,获得积分10
44秒前
jenlaka发布了新的文献求助10
44秒前
脑洞疼应助无双采纳,获得10
44秒前
左丘白桃完成签到,获得积分10
45秒前
47秒前
jiashan发布了新的文献求助10
48秒前
清爽的人龙完成签到 ,获得积分10
49秒前
鲤角兽完成签到,获得积分10
53秒前
Hiraeth完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4767521
求助须知:如何正确求助?哪些是违规求助? 4104642
关于积分的说明 12697212
捐赠科研通 3822409
什么是DOI,文献DOI怎么找? 2109615
邀请新用户注册赠送积分活动 1134121
关于科研通互助平台的介绍 1015028