MTPSol: Multimodal Twin Protein Solubility Prediction Architecture Based on Pretrained Models

计算机科学 溶解度 人工智能 化学 有机化学
作者
Yuan Gao,Hongkui Wang,Lin Zhang,Fufeng Liu,Jiahai Zhou,Yang Gu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00534
摘要

In the process of mining and de novo designing of new enzymes, the solubility of proteins is one of the key factors determining the efficiency of their functional expression. The development of solubility prediction algorithms is important for reducing experimental costs and enhancing the success of protein engineering. However, only a small number of studies have involved the input of protein structural information, which extremely limited the models' accuracy and generalization. Here, we developed a protein solubility prediction architecture named MTPSol by utilizing pretrained models to extract protein features and process the multimodal input of proteins. To further improve the performance of the architecture, cross-modal twin attention and multiscale feature networks were developed to integrate the multimodal features. Evaluating MTPSol with public benchmark data sets, MTPSol demonstrates that the architecture achieves competitive predictive performance. In the assessment conducted on our constructed and validated transaminase data set, MTPSol outperformed existing state-of-the-art models, further attests the architecture's generalization across different protein families. We firmly believe that MTPSol not only offers a more efficient screening method for the discovery of natural enzymes but also holds significant potential in the field of protein de novo design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
西贝贝发布了新的文献求助10
2秒前
flow完成签到,获得积分10
2秒前
Clara凤完成签到,获得积分10
3秒前
想要赚大钱完成签到,获得积分10
4秒前
4秒前
WN发布了新的文献求助10
4秒前
5秒前
5秒前
Jasper应助小石头采纳,获得10
7秒前
善学以致用应助Clara凤采纳,获得10
7秒前
Chen发布了新的文献求助10
9秒前
9秒前
大佬虎发布了新的文献求助10
11秒前
内向的小凡完成签到,获得积分0
11秒前
lh完成签到 ,获得积分10
12秒前
大力丹琴完成签到,获得积分10
12秒前
13秒前
15秒前
15秒前
科研通AI5应助爬爬公主采纳,获得10
16秒前
17秒前
17秒前
汉堡包应助WN采纳,获得10
17秒前
瑞雪完成签到,获得积分10
19秒前
小石头发布了新的文献求助10
20秒前
科研通AI5应助lsc采纳,获得10
21秒前
背后归尘完成签到,获得积分10
22秒前
22秒前
zhenghao发布了新的文献求助10
23秒前
24秒前
潇洒诗云完成签到,获得积分10
25秒前
周周发布了新的文献求助10
26秒前
26秒前
28秒前
科研通AI5应助Poker采纳,获得10
29秒前
wujiachen_1999完成签到,获得积分10
33秒前
34秒前
周周完成签到,获得积分10
34秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816980
求助须知:如何正确求助?哪些是违规求助? 3360427
关于积分的说明 10407756
捐赠科研通 3078348
什么是DOI,文献DOI怎么找? 1690731
邀请新用户注册赠送积分活动 814032
科研通“疑难数据库(出版商)”最低求助积分说明 767985