计算机科学
控制(管理)
航空学
工程类
人工智能
作者
César Andriola,Madhav Chitturi,David A. Noyce
标识
DOI:10.1177/03611981251333713
摘要
Level 4 automated vehicles (AVs) with the operational design domain (ODD) expanding over time are expected to be the future. Although Level 4 AVs do not require driver takeover, human driving will be necessary outside the ODD. While there is a significant amount of research on takeover/disengagement, no prior studies have explored the safety challenges of manual operation of Level 4 AVs. Crash sequence analysis was employed to compare crashes of the AV (during manual control) (AVM) and general driving population, using U.S. data from California Department of Motor Vehicles crash reports and the Crash Report Sampling System (CRSS) dataset, respectively. Clusters of AVM and CRSS crashes were aggregated into nine groups based on crash context. The results suggest that certain crash groups are more challenging for AVM than for CRSS. AVM crashes are vastly less severe than CRSS crashes for all but one crash group that involved right turns. Nearly half of the AVM crashes involving left and right turns were rear-end crashes, while the majority of similar CRSS crashes were side-swipe or angle. The majority of rear-end AVM crashes occur at intersections, while the converse is true for similar CRSS crashes. Intriguingly, in all the AVM rear-end crashes, the lead vehicle was an AV, suggesting hesitation on the part of the safety driver. For AVM, while lane-changing crashes were less frequent, crashes involving parked vehicles were more frequent than for CRSS. The findings indicate the importance of understanding how driver behavior changes with Level 4 AVs, and how driver training might play an important role in the safety of AVs.
科研通智能强力驱动
Strongly Powered by AbleSci AI