DTIAM: a unified framework for predicting drug-target interactions, binding affinities and drug mechanisms

亲缘关系 药品 结合亲和力 计算生物学 药物靶点 药物发现 血浆蛋白结合 化学 药理学 生物 立体化学 生物化学 受体
作者
Zhangli Lu,Guoqiang Song,Huimin Zhu,Chuqi Lei,Xinliang Sun,Kaili Wang,Libo Qin,Yafei Chen,Jing Tang,Min Li
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1) 被引量:4
标识
DOI:10.1038/s41467-025-57828-0
摘要

Accurate and robust prediction of drug-target interactions (DTIs) plays a vital role in drug discovery but remains challenging due to limited labeled data, cold start problems, and insufficient understanding of mechanisms of action (MoA). Distinguishing activation and inhibition mechanisms is particularly critical in clinical applications. Here, we propose DTIAM, a unified framework for predicting interactions, binding affinities, and activation/inhibition mechanisms between drugs and targets. DTIAM learns drug and target representations from large amounts of label-free data through self-supervised pre-training, which accurately extracts their substructure and contextual information, and thus benefits the downstream prediction based on these representations. DTIAM achieves substantial performance improvement over other state-of-the-art methods in all tasks, particularly in the cold start scenario. Moreover, independent validation demonstrates the strong generalization ability of DTIAM. All these results suggest that DTIAM can provide a practically useful tool for predicting novel DTIs and further distinguishing the MoA of candidate drugs. Accurately predicting drug-target interactions and distinguishing the drug mechanisms are critical in drug discovery. The authors here propose a unified framework for predicting drug-target interactions, binding affinities and drug mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞快的雅青完成签到 ,获得积分10
刚刚
刚刚
Yang应助英勇凝旋采纳,获得10
1秒前
简珹楚发布了新的文献求助10
3秒前
与山发布了新的文献求助10
3秒前
田様应助芸栀采纳,获得30
4秒前
打打应助Geminiwod采纳,获得10
4秒前
慕青应助时不我待C采纳,获得10
4秒前
柔弱天德发布了新的文献求助10
5秒前
无聊的爆米花完成签到 ,获得积分10
5秒前
lll发布了新的文献求助10
5秒前
wyk发布了新的文献求助10
5秒前
后笑晴发布了新的文献求助10
6秒前
7秒前
8秒前
老Mark完成签到,获得积分10
9秒前
9秒前
9秒前
wanci应助研友_Z7Xdl8采纳,获得10
10秒前
Yang应助英勇凝旋采纳,获得10
10秒前
10秒前
liu完成签到,获得积分10
11秒前
后笑晴完成签到,获得积分10
11秒前
12秒前
13秒前
柔弱天德完成签到,获得积分10
13秒前
专注追命发布了新的文献求助10
13秒前
hope完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
长大lwp发布了新的文献求助10
15秒前
克洛诺斯想要发文章完成签到,获得积分10
15秒前
时不我待C发布了新的文献求助10
15秒前
16秒前
sdyswgm发布了新的文献求助10
17秒前
17秒前
打打应助细心的岩采纳,获得10
20秒前
chris完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4480753
求助须知:如何正确求助?哪些是违规求助? 3937538
关于积分的说明 12215390
捐赠科研通 3592539
什么是DOI,文献DOI怎么找? 1975689
邀请新用户注册赠送积分活动 1012835
科研通“疑难数据库(出版商)”最低求助积分说明 906039