Digital Descriptors in Predicting Catalysis Reaction Efficiency and Selectivity

选择性 催化作用 化学 组合化学 计算机科学 有机化学
作者
Qin Zhu,Yuming Gu,Jing Ma
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:16 (9): 2357-2368 被引量:3
标识
DOI:10.1021/acs.jpclett.4c03733
摘要

Accurately controlling the interactions and dynamic changes between multiple active sites (e.g., metals, vacancies, and lone pairs of heteroatoms) to achieve efficient catalytic performance is a key issue and challenge in the design of complex catalytic reactions involving 2D metal-supported catalysts, metal-zeolites, metal–organic catalysts, and metalloenzymes. With the aid of machine learning (ML), descriptors play a central role in optimizing the electrochemical performance of catalysts, elucidating the essence of catalytic activity, and predicting more efficient catalysts, thereby avoiding time-consuming trial-and-error processes. Three kinds of descriptors─active center descriptors, interfacial descriptors, and reaction pathway descriptors─are crucial for understanding and designing metal-supported catalysts. Specifically, vacancies, as active sites, synergize with metals to significantly promote the reduction reactions of energy-relevant small molecules. By combining some physical descriptors, interpretable descriptors can be constructed to evaluate catalytic performance. Future development of descriptors and ML models faces the challenge of constructing descriptors for vacancies in multicatalysis systems to rationally design the activity, selectivity, and stability of catalysts. Utilization of generative artificial intelligence and multimodal ML to automatically extract descriptors would accelerate the exploration of dynamic reaction mechanisms. The transferable descriptors from metal-supported catalysts to artificial metalloenzymes provide innovative solutions for energy conversion and environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知安完成签到,获得积分10
刚刚
1秒前
寒塘完成签到,获得积分10
1秒前
1秒前
2秒前
wangdqi完成签到,获得积分10
2秒前
MissXia发布了新的文献求助30
2秒前
聂世林发布了新的文献求助10
2秒前
云吞哦发布了新的文献求助10
2秒前
3秒前
3秒前
ty完成签到,获得积分10
3秒前
浮游应助zhangxiaoqing采纳,获得10
4秒前
王粒发布了新的文献求助10
4秒前
4秒前
courage完成签到,获得积分10
4秒前
懒羊羊发布了新的文献求助10
5秒前
5秒前
5秒前
彭于晏应助hbzyydx46采纳,获得10
5秒前
思源应助zht采纳,获得10
6秒前
luoyulin完成签到,获得积分10
6秒前
6秒前
jie发布了新的文献求助10
6秒前
ding应助wangdqi采纳,获得10
6秒前
皮崇知发布了新的文献求助10
6秒前
whysoserious发布了新的文献求助10
6秒前
7秒前
chuanxue发布了新的文献求助10
7秒前
Mitophagy发布了新的文献求助30
7秒前
8秒前
8秒前
kk发布了新的文献求助20
8秒前
苗条大完成签到,获得积分20
8秒前
李哈哈发布了新的文献求助10
8秒前
8秒前
8秒前
HopeStar发布了新的文献求助10
9秒前
cx330完成签到,获得积分20
9秒前
11完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490758
求助须知:如何正确求助?哪些是违规求助? 4589276
关于积分的说明 14424370
捐赠科研通 4521319
什么是DOI,文献DOI怎么找? 2477293
邀请新用户注册赠送积分活动 1462578
关于科研通互助平台的介绍 1435369