亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate VLE Predictions via COSMO-RS-Guided Deep Learning Models: Solubility and Selectivity in Physical Solvent Systems for Carbon Capture

溶解度 溶剂 COSMO-RS公司 选择性 碳纤维 化学 热力学 计算机科学 工艺工程 有机化学 物理 算法 工程类 催化作用 复合数 离子液体
作者
Edoardo Parascandolo,Vincent Gerbaud,David Camilo Corrales,Noslen Hernández,Sophie Thiébaud‐Roux,Ivonne Rodríguez-Donis
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (16): 8514-8526
标识
DOI:10.1021/acs.jcim.5c01148
摘要

Carbon capture through physical solvents reduces energy consumption and lowers environmental impact compared with conventional chemical absorption methods. Typical properties for solvent screening are solubility and selectivity. However, they require accurate prediction of vapor-liquid equilibrium (VLE), which remains a critical challenge due to the lack of enough available experimental data. This could be supplemented by in silico data prediction, provided that current prediction models are improved as this paper intends. When modeling physical solvents, a challenge arises due to the dominant role of nonbonding interactions and molecular geometry. For this purpose, a machine learning pipeline is developed using VLE results obtained from the quantum chemical-based thermodynamic model COnductor-like Screening MOdel for Real Solvents (COSMO-RS) and experimental data. A directed message passing neural network (D-MPNN) architecture is employed, leveraging molecular representations, additional features, and transfer learning to refine predictions. Two models, solubility and selectivity, are pretrained over 30,000 COSMO-RS simulated data points and fine-tuned with experimental VLE data sets for CO2 and common gas impurities (H2S, CH4, N2, and H2), respectively. The models' accuracy is significantly improved over that of COSMO alone by correcting bias in total pressure predictions. Experimental trends are successfully reproduced in the test data, confirming the physical consistency of the models. Sensitivity analysis confirms that molecular features have the highest impact on estimations, while the scaling effect of additional features is essential for accuracy. These results demonstrate the potential of the proposed methodology to systematically screen and optimize an extensive range of physical solvents on the basis of their chemical structure for carbon capture applications, reducing the reliance on costly and time-consuming experimental measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘哈哈完成签到 ,获得积分10
7秒前
司念者你完成签到 ,获得积分10
9秒前
Chemistry完成签到 ,获得积分10
10秒前
15秒前
白小黑发布了新的文献求助30
15秒前
笑点低的铁身完成签到 ,获得积分10
21秒前
23秒前
在水一方完成签到,获得积分0
35秒前
50秒前
乐乐应助笑点低小熊猫采纳,获得10
51秒前
1分钟前
李健应助铁妞妞是土猫采纳,获得10
1分钟前
orixero应助南殊爱吃鱼粮采纳,获得10
1分钟前
1分钟前
joy123完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
铁妞妞是土猫完成签到,获得积分20
2分钟前
Akim应助喜悦的不言采纳,获得10
2分钟前
小二郎应助铁妞妞是土猫采纳,获得10
2分钟前
2分钟前
Jasper应助小小K采纳,获得10
2分钟前
拼搏念蕾完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
jh完成签到 ,获得积分10
2分钟前
2分钟前
Yu发布了新的文献求助10
2分钟前
echo完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
3分钟前
AaronW完成签到 ,获得积分10
3分钟前
健小子完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764029
求助须知:如何正确求助?哪些是违规求助? 5546939
关于积分的说明 15405777
捐赠科研通 4899486
什么是DOI,文献DOI怎么找? 2635624
邀请新用户注册赠送积分活动 1583808
关于科研通互助平台的介绍 1538933