Advances in Path‐Planning Algorithms for Agricultural Robots

运动规划 路径(计算) 农业 机器人 计算机科学 人工智能 算法 地理 计算机网络 考古
作者
Yanpeng Gao,Quan Jiang,Ming Wang,Xiaowei Dong
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.70023
摘要

ABSTRACT With the rapid advancement of intelligent technologies, the application of robots in agriculture has expanded significantly. Path planning, a critical technology for the autonomous navigation of agricultural robots, has emerged as a key research direction. This paper classifies path‐planning algorithms into four categories: traditional classical algorithms, modern intelligent bionic algorithms, sampling‐based planning algorithms, and machine learning algorithms. It systematically examines the concepts and characteristics of each algorithm type, evaluates their suitability across various agricultural environments, compares their convergence speeds and computational efficiencies, and discusses potential improvement strategies. The analysis reveals that traditional classical algorithms offer high precision and stability in structured farmland environments but lack dynamic adaptability. Modern intelligent bionic algorithms enhance path robustness in complex terrains through group collaboration and global optimization mechanisms, yet they face challenges with slow convergence and parameter sensitivity; sampling‐based planning algorithms excel in obstacle avoidance within unstructured, dynamic scenarios, but the quality of the generated paths depends heavily on the sampling strategy; machine learning algorithms enable environment‐adaptive decision‐making through data‐driven approaches, though they require substantial labeled data and significant computing resources. Further comparisons suggest that path‐planning algorithms' future development trend will involve integrating multiple algorithms' strengths and leveraging advanced technologies such as artificial intelligence, cloud computing, and edge computing to improve adaptability, real‐time performance, and intelligent decision‐making capabilities in complex agricultural environments. This paper provides theoretical support and practical guidance for research on path planning for agricultural robots and offers new insights for accelerating the development of modern agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维奈克拉应助困困包采纳,获得20
刚刚
Lucas应助小李同学采纳,获得10
刚刚
刚刚
hongci13发布了新的文献求助10
1秒前
江小白发布了新的文献求助10
1秒前
彭彭完成签到,获得积分20
1秒前
何柯应助寒山采纳,获得10
3秒前
烟尘发布了新的文献求助10
3秒前
Xx发布了新的文献求助20
3秒前
3秒前
夏艳萍完成签到,获得积分10
3秒前
浮游应助不过六级不改名采纳,获得10
4秒前
4秒前
寒冷毛衣完成签到,获得积分20
4秒前
4秒前
W29完成签到,获得积分0
4秒前
4秒前
顺利汉堡发布了新的文献求助10
5秒前
5秒前
fu完成签到 ,获得积分20
6秒前
Hello应助清风小白采纳,获得10
6秒前
江小白完成签到,获得积分10
7秒前
Jasper应助直率豆芽采纳,获得10
7秒前
华仔应助渊渟岳峙采纳,获得10
7秒前
老实芭蕉完成签到,获得积分10
8秒前
夏艳萍发布了新的文献求助10
8秒前
深情安青应助菠萝仔采纳,获得10
8秒前
顾矜应助绛橘色的日落采纳,获得10
9秒前
羫孔发布了新的文献求助10
9秒前
浮游应助闪闪静芙采纳,获得10
10秒前
wang完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
华仔应助宝安采纳,获得10
11秒前
滴滴答答完成签到,获得积分10
12秒前
13秒前
嘿嘿完成签到 ,获得积分10
14秒前
14秒前
思源应助liwenqiang采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514397
求助须知:如何正确求助?哪些是违规求助? 4608290
关于积分的说明 14509418
捐赠科研通 4544118
什么是DOI,文献DOI怎么找? 2489917
邀请新用户注册赠送积分活动 1471896
关于科研通互助平台的介绍 1443744