电化学发光
化学
发光体
检出限
芘
发光
分子内力
多孔性
光化学
光电子学
立体化学
色谱法
有机化学
物理
作者
Meiling Lü,Wei Huang,Shuzhen Gao,Jialing Zhang,Wenbin Liang,Yan Li,Ruo Yuan,Dong‐Rong Xiao
出处
期刊:Analytical Chemistry
[American Chemical Society]
日期:2022-11-03
卷期号:94 (45): 15832-15838
被引量:43
标识
DOI:10.1021/acs.analchem.2c03635
摘要
Exploring new electrochemiluminescence (ECL) luminophores with strong ECL emission is highly desirable for developing ultrasensitive ECL sensors. Herein, a pyrene-based hydrogen-bonded organic framework (Py-HOF) featuring prominent ECL performance was prepared by utilizing 1,3,6,8-tetrakis(p-benzoic acid) pyrene (H4TBAPy) with an aggregation-induced enhanced emission (AIEE) property as a building block, exhibiting a stronger ECL emission than those of H4TBAPy monomers, H4TBAPy aggregates, the low-porosity Py-HOF-210 °C and Py-HOF-180 °C. We have coined the term "the porosity- and aggregation-induced enhanced ECL (PAIE-ECL)" for this intriguing phenomenon. The Py-HOF displayed superb and stable ECL intensity, not only because the luminophore H4TBAPy was assembled into the Py-HOF via four pairs of O–H···O hydrogen bonds, which constrained the intramolecular movements to reduce nonradiative transition, but also because the H4TBAPy in Py-HOF was stacked in a slipped face-to-face mode to form J-aggregates that benefited the ECL enhancement. Furthermore, the high porosity of Py-HOF allowed the enrichment of coreactants and facilitated the migration of ions, electrons, and coreactants, which made it possible for the inner and outer H4TBAPy to be electrochemically excited. Considering the remarkable ECL performance, Py-HOF was first employed as an ECL probe combined with a 3D DNA nanomachine amplification strategy to assemble a hypersensitive "on–off" ECL sensor for the microRNA-141 assay, presenting a satisfactory linear range (100 aM to 1 nM) with a detection limit of 14.4 aM. The PAIE-ECL manifested by Py-HOF provided a bright avenue for the design and synthesis of outstanding HOF-based ECL materials and offered new opportunities for the development of ECL biosensors with excellent sensitivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI