已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cotton aphid infestation monitoring using Sentinel-2 MSI imagery coupled with derivative of ratio spectroscopy and random forest algorithm

端元 多光谱图像 遥感 卫星 卫星图像 多光谱模式识别 侵染 算法 像素 环境科学 植被(病理学) 天蓬 随机森林 计算机科学 数学 人工智能 农学 物理 生态学 地理 生物 天文 病理 医学
作者
Hancong Fu,Hengqian Zhao,Rui Song,Yifeng Yang,Zihan Li,Shijia Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:13 被引量:8
标识
DOI:10.3389/fpls.2022.1029529
摘要

Aphids are one of the main pests of cotton and have been an important disaster limiting cotton yield. It is important to use satellite multispectral data to monitor the severity of cotton aphids in a timely and accurate manner on regional scale. Based on the combination of derivative of ratio spectra (DRS) and random forest (RF) algorithm, this study researched the quantitative monitoring model of cotton aphid severity based on Sentinel-2 data. First, the cotton area was extracted by using a supervised classification algorithm and the vegetation index threshold method. Then, the DRS algorithm was used to analyze the spectral characteristics of cotton aphids from three scales, and the Pearson correlation analysis algorithm was used to extract the bands significantly related to aphid infestation. Finally, the RF model was trained by ground sampling points and its accuracy was evaluated. The optimal model results were selected by the cross-validation method, and the accuracy was compared with the four classical classification algorithms. The results showed that (1) the canopy spectral reflectance curves at different grades of cotton aphid infestation were significantly different, with a significant positive correlation between cotton aphid grade and spectral reflectance in the visible band range and a negative correlation in the near-infrared band range; (2) The DRS algorithm could effectively remove the interference of the background endmember of satellite multispectral image pixels and enhance the aphid spectral features. The analysis results from three different scales and the evaluation results demonstrate the effectiveness of the algorithm in processing satellite multispectral data; (3) After the DRS processing, Sentinel-2 multispectral images could effectively classify the severity of cotton aphid infestation by the RF model with an overall classification accuracy of 80% and a kappa coefficient of 0.73. Compared with the results of four classical classification algorithms, the proposed algorithm has the best accuracy, which proves the superiority of RF. Based on satellite multispectral data, the DRS and RF can be combined to monitor the severity of cotton aphids on a regional scale, and the accuracy can meet the actual need.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gexzygg应助俞无声采纳,获得10
2秒前
3秒前
4秒前
xiaomaxia发布了新的文献求助10
8秒前
孤独梦安发布了新的文献求助10
9秒前
小和发布了新的文献求助10
10秒前
永曼完成签到,获得积分10
11秒前
镓氧锌钇铀应助核桃采纳,获得10
12秒前
天天快乐应助核桃采纳,获得10
12秒前
NexusExplorer应助核桃采纳,获得10
12秒前
Owen应助んな采纳,获得10
15秒前
打打应助Chloe采纳,获得10
17秒前
打打应助远了个方采纳,获得10
17秒前
天天快乐应助远了个方采纳,获得10
17秒前
香蕉觅云应助远了个方采纳,获得10
17秒前
17秒前
华仔应助远了个方采纳,获得10
18秒前
慕青应助远了个方采纳,获得10
18秒前
Orange应助远了个方采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
打打应助远了个方采纳,获得10
18秒前
英俊的铭应助远了个方采纳,获得10
18秒前
accept应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得30
18秒前
李健应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得30
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
21秒前
22秒前
香蕉觅云应助AQI采纳,获得10
23秒前
26秒前
Chen发布了新的文献求助10
28秒前
hyxu678发布了新的文献求助10
29秒前
aloopp发布了新的文献求助10
30秒前
科研通AI5应助Lucky采纳,获得10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4255165
求助须知:如何正确求助?哪些是违规求助? 3787944
关于积分的说明 11887960
捐赠科研通 3438018
什么是DOI,文献DOI怎么找? 1886771
邀请新用户注册赠送积分活动 937858
科研通“疑难数据库(出版商)”最低求助积分说明 843592