Low‐dose CT denoising with a high‐level feature refinement and dynamic convolution network

特征(语言学) 计算机科学 降噪 卷积(计算机科学) 人工智能 核(代数) 噪音(视频) 模式识别(心理学) 投影(关系代数) 医学影像学 计算机视觉 算法 图像(数学) 人工神经网络 数学 哲学 语言学 组合数学
作者
Sihan Yang,Qiang Pu,Chunting Lei,Qiao Zhang,Seunggil Jeon,Xiaomin Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3597-3611 被引量:4
标识
DOI:10.1002/mp.16175
摘要

Since the potential health risks of the radiation generated by computer tomography (CT), concerns have been expressed on reducing the radiation dose. However, low-dose CT (LDCT) images contain complex noise and artifacts, bringing uncertainty to medical diagnosis.Existing deep learning (DL)-based denoising methods are difficult to fully exploit hierarchical features of different levels, limiting the effect of denoising. Moreover, the standard convolution kernel is parameter sharing and cannot be adjusted dynamically with input change. This paper proposes an LDCT denoising network using high-level feature refinement and multiscale dynamic convolution to mitigate these problems.The dual network structure proposed in this paper consists of the feature refinement network (FRN) and the dynamic perception network (DPN). The FDN extracts features of different levels through residual dense connections. The high-level hierarchical information is transmitted to DPN to improve the low-level representations. In DPN, the two networks' features are fused by local channel attention (LCA) to assign weights in different regions and handle CT images' delicate tissues better. Then, the dynamic dilated convolution (DDC) with multibranch and multiscale receptive fields is proposed to enhance the expression and processing ability of the denoising network. The experiments were trained and tested on the dataset "NIH-AAPM-Mayo Clinic Low-Dose CT Grand Challenge," consisting of 10 anonymous patients with normal-dose abdominal CT and LDCT at 25% dose. In addition, external validation was performed on the dataset "Low Dose CT Image and Projection Data," which included 300 chest CT images at 10% dose and 300 head CT images at 25% dose.Proposed method compared with seven mainstream LDCT denoising algorithms. On the Mayo dataset, achieved peak signal-to-noise ratio (PSNR): 46.3526 dB (95% CI: 46.0121-46.6931 dB) and structural similarity (SSIM): 0.9844 (95% CI: 0.9834-0.9854). Compared with LDCT, the average increase was 3.4159 dB and 0.0239, respectively. The results are relatively optimal and statistically significant compared with other methods. In external verification, our algorithm can cope well with ultra-low-dose chest CT images at 10% dose and obtain PSNR: 28.6130 (95% CI: 28.1680-29.0580 dB) and SSIM: 0.7201 (95% CI: 0.7101-0.7301). Compared with LDCT, PSNR/SSIM is increased by 3.6536dB and 0.2132, respectively. In addition, the quality of LDCT can also be improved in head CT denoising.This paper proposes a DL-based LDCT denoising algorithm, which utilizes high-level features and multiscale dynamic convolution to optimize the network's denoising effect. This method can realize speedy denoising and performs well in noise suppression and detail preservation, which can be helpful for the diagnosis of LDCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xdmhv完成签到 ,获得积分10
1秒前
虚拟电子小熊完成签到 ,获得积分20
1秒前
残幻应助schahaha采纳,获得10
3秒前
momo完成签到,获得积分10
3秒前
王哈哈发布了新的文献求助10
4秒前
4秒前
janejane发布了新的文献求助10
4秒前
杨大夫发布了新的文献求助20
4秒前
Solo8792完成签到,获得积分10
5秒前
wwqc完成签到,获得积分0
6秒前
MAVS完成签到,获得积分10
7秒前
企鹅完成签到,获得积分20
7秒前
8秒前
一蓑烟雨任平生完成签到,获得积分10
8秒前
沉梦昂志_hzy完成签到,获得积分0
9秒前
10秒前
lilili发布了新的文献求助10
11秒前
12秒前
07发布了新的文献求助10
13秒前
受伤访波完成签到,获得积分10
13秒前
13026581019完成签到,获得积分10
15秒前
皮汤汤完成签到 ,获得积分10
15秒前
17秒前
YULIA发布了新的文献求助30
18秒前
Lucas应助1DDDDD采纳,获得30
18秒前
18秒前
18秒前
机智幻嫣应助欣喜的迎梦采纳,获得10
19秒前
科研通AI5应助欣喜的迎梦采纳,获得10
19秒前
20秒前
aurevoir完成签到,获得积分10
22秒前
qizhang发布了新的文献求助30
23秒前
思绪摸摸头完成签到 ,获得积分10
25秒前
Solo8792发布了新的文献求助10
26秒前
26秒前
JXDYYZK完成签到,获得积分10
27秒前
谦让的莆完成签到 ,获得积分10
27秒前
子车雁开完成签到,获得积分10
29秒前
31秒前
州巴斯完成签到 ,获得积分10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093