Cost reduction for data acquisition based on data fusion: Reconstructing the surface temperature of a turbine blade

还原(数学) 数据缩减 数据采集 忠诚 传感器融合 数据建模 机器学习 替代模型 人工神经网络 计算机科学 数据挖掘 数据集成 人工智能 高保真 物理 操作系统 数据库 数学 电信 声学 几何学
作者
Fengbo Wen,Zuobiao Li,Chenxin Wan,Liangjun Su,Zhiyuan Zhao,Jun Zeng,Songtao Wang,Binghua Pan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (1) 被引量:12
标识
DOI:10.1063/5.0132105
摘要

Turbine cooling is an effective way to improve the comprehensive performance and service life of gas turbines. In recent decades, there has been rapid growth in research into external cooling and internal cooling methods. As a result, there is a significant amount of experimental and numerical data. However, due to their multi-source nature, the datasets have different degrees of fidelity and different data structures, which hinder the effective use of the data. Besides, high-fidelity (HF) data often have high acquisition costs, which hinder their application in aerospace. A novel form of data fusion is introduced in this paper. We integrate multi-source data using special algorithms to produce more reliable data. A deep-learning neural network with the PointNet architecture is designed to establish two surrogate models: a high-fidelity model (HF model) trained by experimental data and a low-fidelity model (LF model) based on Reynolds-averaged Navier–Stokes simulation data. Both models predict results with less than 1% reference errors compared to their respective ground truth at most data points. In addition, we explore the role of transfer learning in multi-fidelity modeling. A fusion algorithm based on a Gaussian function and a weighted average strategy is proposed to combine the values from the HF model and the LF model. The presented results show that the fusion data are more accurate than computational fluid dynamics data, successfully meeting the goal of reducing the cost of data acquisition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一叶发布了新的文献求助10
1秒前
aaaaa完成签到 ,获得积分10
3秒前
6秒前
华仔应助yyymmma采纳,获得10
6秒前
7秒前
9秒前
搜集达人应助HUO采纳,获得20
11秒前
缓慢平蓝发布了新的文献求助10
12秒前
环境催化发布了新的文献求助10
12秒前
12秒前
野草发布了新的文献求助10
12秒前
科研通AI5应助qianZhang采纳,获得10
13秒前
13秒前
乐乐应助雪糕刺客采纳,获得10
13秒前
大力翠丝完成签到,获得积分10
13秒前
monere发布了新的文献求助10
14秒前
15秒前
有魅力丝完成签到,获得积分20
15秒前
华仔应助燕小丙采纳,获得10
15秒前
大个应助开心山芙采纳,获得30
16秒前
17秒前
yyymmma发布了新的文献求助10
17秒前
18秒前
EOFG0PW完成签到,获得积分10
18秒前
有魅力丝发布了新的文献求助10
19秒前
19秒前
ha发布了新的文献求助10
20秒前
星落枝头发布了新的文献求助10
20秒前
22秒前
lizhiqian2024发布了新的文献求助10
23秒前
23秒前
asdfg123发布了新的文献求助10
25秒前
ZhouYW应助稳稳的幸福采纳,获得10
26秒前
Lucas应助xin采纳,获得10
26秒前
ZQP发布了新的文献求助10
27秒前
无花果应助kkkk采纳,获得10
27秒前
27秒前
qianZhang发布了新的文献求助10
28秒前
29秒前
史迪仔发布了新的文献求助20
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791034
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276743
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761066