Breast Cancer Detection Based on Machine Learning

机器学习 支持向量机 人工智能 计算机科学 乳腺癌 决策树 混淆矩阵 朴素贝叶斯分类器 癌症 医学 内科学
作者
İbrahim Koç,Waheeb Tashan,Ibraheem Shayea,Aliya Zhetpisbayeva
标识
DOI:10.1109/csnt60213.2024.10545785
摘要

The increasing yearly death rates caused by breast cancer, which is the most prevalent kind of cancer and a leading cause of female mortality worldwide, emphasize the urgent requirement for progress in disease prognosis and detection to enhance overall well-being. Attaining a high level of accuracy in cancer prediction is of utmost significance in improving treatment strategies and enhancing patient survival rates. Machine learning (ML) techniques are crucial in improving the accuracy and prior identification of breast cancer. They have become a central focus of study and have shown strong effectiveness. This study applies four machine learning techniques, namely Support Vector Machine (SVM), Decision tree, Gaussian Naive Bayes (NB), and K-Nearest Neighbours (KNN), to the breast cancer Wisconsin diagnostic dataset. Following the obtained outcomes, a thorough assessment and comparison of the performance of these classifiers were carried out. The primary aim of this study is to utilize ML algorithms to forecast and identify the breast cancer, specifically by establishing the most efficient method based on the confusion matrix, accuracy, and precision. Remarkably, the SVM exhibited superior performance compared to the other models, with an impressive accuracy rate of 96.7%. The studies were performed in the Visual Studio Code environment utilizing the Python programming language and the Scikit-learn module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣然完成签到 ,获得积分10
1秒前
tanhieupy完成签到,获得积分10
1秒前
佳佳刘发布了新的文献求助10
1秒前
搞怪莫茗应助Mikey采纳,获得10
1秒前
JamesPei应助一一一采纳,获得30
2秒前
源缘完成签到 ,获得积分10
2秒前
孔大漂亮完成签到,获得积分10
2秒前
柠檬加冰发布了新的文献求助10
3秒前
ww完成签到,获得积分10
3秒前
小波完成签到,获得积分10
3秒前
现代的访曼应助慧慧采纳,获得20
3秒前
Krystal发布了新的文献求助10
3秒前
搜集达人应助Lialilico采纳,获得10
4秒前
heady完成签到,获得积分10
5秒前
5秒前
Kindy完成签到,获得积分10
5秒前
Akim应助132456采纳,获得10
6秒前
超帅柚子发布了新的文献求助10
6秒前
6秒前
含蓄醉柳完成签到 ,获得积分10
7秒前
123完成签到,获得积分20
8秒前
8秒前
Owen应助神勇的雅寒采纳,获得10
8秒前
JamesPei应助今年我必胖20斤采纳,获得10
8秒前
矛盾螺旋完成签到,获得积分20
9秒前
9秒前
疯狂的胡萝卜完成签到,获得积分10
9秒前
9秒前
9秒前
善学以致用应助米米采纳,获得10
10秒前
10秒前
Krystal完成签到,获得积分10
11秒前
一一一发布了新的文献求助30
11秒前
12秒前
李健的粉丝团团长应助BYN采纳,获得10
12秒前
慧慧完成签到,获得积分10
13秒前
cb1999完成签到,获得积分10
13秒前
13秒前
515发布了新的文献求助10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957880
求助须知:如何正确求助?哪些是违规求助? 3504018
关于积分的说明 11116696
捐赠科研通 3235352
什么是DOI,文献DOI怎么找? 1788202
邀请新用户注册赠送积分活动 871112
科研通“疑难数据库(出版商)”最低求助积分说明 802473