亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel colorectal cancer screening framework with feature interpretability to identify high‐risk populations for colonoscopy

可解释性 医学 结肠镜检查 结直肠癌 接收机工作特性 队列 特征选择 风险评估 特征(语言学) 机器学习 人工智能 内科学 肿瘤科 癌症 计算机科学 哲学 语言学 计算机安全
作者
LI Ming-shan,Yangming Gong,Yi Pang,Mengyin Wu,Kai Gu,Yuanyuan Wang,Yi Guo
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:39 (9): 1827-1836
标识
DOI:10.1111/jgh.16600
摘要

Abstract Background and Aim Risk assessment is of paramount importance for the detection and treatment of colorectal cancer. We developed and validated a feature interpretability screening framework to identify high‐risk populations and recommend colonoscopy for them. Methods We utilized a training cohort consisting of 1 252 605 participants who underwent colonoscopies in Shanghai from 2013 to 2015 to develop the screening framework. We incorporated Shapley additive explanation values into feature selection to provide interpretability for the framework. Two sampling methods were separately employed to mitigate potential model bias caused by class imbalance. Furthermore, we employed various machine learning algorithms to construct risk assessment models and compared their performance. We tested the screening models on an external validation cohort of 359 462 samples and conducted comprehensive evaluation and statistical analysis of the validation results. Results The external validation results demonstrated that the models in the proposed framework achieved sensitivity over 0.734, specificity over 0.790, and area under the receiver operating characteristic curve ranging from 0.808 to 0.859. In the predictions of the best‐performing model, the prevalence rates of colorectal cancer were 0.059% and 1.056% in the low‐ and high‐risk groups, respectively. If colonoscopies were performed only on the high‐risk group predicted by the model, only 14.36% of total colonoscopies would be needed to detect 74.86% of colorectal cancer cases. Conclusions We developed and validated a novel framework to identify populations at high risk for colorectal cancer. Those classified as high risk should undergo colonoscopy for further diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中中完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
17秒前
科目三应助clement采纳,获得10
20秒前
光合作用完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
40秒前
45秒前
52秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
彭于晏应助共析钢采纳,获得10
2分钟前
李健的小迷弟应助2953685951采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
共析钢发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
ZWTH完成签到,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
2953685951发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
htxtz应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Raunio完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
斯文败类应助hjp采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
htxtz应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881614
求助须知:如何正确求助?哪些是违规求助? 3424001
关于积分的说明 10736801
捐赠科研通 3148861
什么是DOI,文献DOI怎么找? 1737685
邀请新用户注册赠送积分活动 838890
科研通“疑难数据库(出版商)”最低求助积分说明 784138