Elevating logistics performance: harnessing the power of artificial intelligence in e-commerce

业务 功率(物理) 运营管理 产业组织 电子商务 营销 过程管理 知识管理 计算机科学 经济 万维网 量子力学 物理
作者
Gunjan Malhotra,Manjeet Kharub
出处
期刊:The International Journal of Logistics Management [Emerald Publishing Limited]
被引量:2
标识
DOI:10.1108/ijlm-01-2024-0046
摘要

Purpose Artificial intelligence (AI) usage improves e-commerce logistics efficiency. However, many actors can play significant roles, such as supply chain consistency (SCC), last-mile logistics (LML) performance and collaboration and coordination among logistics firms. This study aims to assess how SCC and LML performance mediate and collaboration and coordination moderate the relationship between AI usage and logistics efficiency. Design/methodology/approach A structured questionnaire was used to collect the data. A total of 245 valid responses were received from Indian e-commerce businesses. The data were then analysed using AMOS v25 and structural equational modelling using SPSS for regression, PROCESS macro for mediation and moderated mediation analysis. Findings The findings show that AI usage independently impacts logistics efficiency, with SCC and last-mile delivery performance as mediating variables. Collaboration and coordination among logistic firms are also critical moderators in enhancing AI’s efficacy in logistic operations. The study findings suggest the integration of AI into logistic operations and provide implications to managers on the urgency of fostering a collaborative and synchronised environment to utilise the full potential of AI in e-commerce businesses. Originality/value This study not only contributes to the field of logistics theory by presenting empirical data on the various ramifications of AI but also offers practical guidance for logistics firms, particularly those operating in developing economies, on how to strategically employ AI to enhance operational efficiency and attain a competitive advantage in the era of e-commerce logistics in the digital age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
David完成签到,获得积分10
刚刚
糊涂涂完成签到 ,获得积分10
1秒前
1秒前
YX完成签到,获得积分20
1秒前
今后应助朱忠华采纳,获得10
2秒前
Hello应助22222采纳,获得10
2秒前
3秒前
小龙完成签到,获得积分10
4秒前
wakaka发布了新的文献求助10
5秒前
aa发布了新的文献求助10
8秒前
10秒前
11秒前
13秒前
rose完成签到,获得积分10
15秒前
16秒前
小龙发布了新的文献求助20
17秒前
xxhhh发布了新的文献求助10
19秒前
ZhChHooooi发布了新的文献求助10
20秒前
wakaka完成签到,获得积分10
20秒前
bkagyin应助hzz采纳,获得10
20秒前
kirazou完成签到,获得积分10
20秒前
山楂完成签到,获得积分10
22秒前
852应助FF采纳,获得10
24秒前
安静的迎南完成签到,获得积分10
25秒前
乐乐应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
Rye227应助科研通管家采纳,获得10
26秒前
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
26秒前
荷兰香猪发布了新的文献求助10
27秒前
刘兴波完成签到,获得积分20
27秒前
ZhChHooooi完成签到,获得积分20
28秒前
无奈念薇发布了新的文献求助10
34秒前
34秒前
35秒前
荷兰香猪完成签到,获得积分10
35秒前
科研通AI5应助cc采纳,获得10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327032
关于积分的说明 10229289
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669728
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757