Modeling and analysis of jetting behavior of surface charge-induced electrohydrodynamic printing

电流体力学 物理 电荷(物理) 机械 表面电荷 曲面(拓扑) 纳米技术 经典力学 电场 量子力学 几何学 数学 材料科学
作者
Yu Jiang,Longkang Yang,Dong Ye,Yin Guan,Weiwei Deng,Wuxing Lai,YongAn Huang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:1
标识
DOI:10.1063/5.0228860
摘要

Electrohydrodynamic (EHD) printing enables large-area, ultra-high-resolution manufacturing across a broad range of ink viscosities, but inevitably encounters difficulties when printing on electrically insulating three-dimensional substrates due to unpredictable electric field and surface residual charges. To overcome these obstacles, a novel approach called plasma-induced electrohydrodynamic (PiE) printing has been proposed. PiE printing employs plasma to directly create a controllable local charge region directly on substrate surfaces, which triggers EHD ink ejection and mitigates the effect of residual charges. However, the underlying mechanisms of the jetting behavior with respect to printing parameters, such as the charge-induced electric field, remain unexplored. Here, we conduct a numerical investigation, based on the Taylor–Melcher leaky dielectric model and the level set method, on the jetting behavior of substrate surface charge-induced EHD printing. We first introduce the dynamics behavior throughout the entire printing process. Then, we carry out a comprehensive investigation on surface charge-induced EHD printing under four crucial parameters: the amount of preset surface charge, the radius of preset surface charge, the duration of preset surface charge, and liquid electrical conductivity. By analyzing the induced electric field, induced charge density, fluid velocity, jet diameters, and deposited droplet sizes obtained from the numerical results, we elucidate the influence of these parameters on the dynamic behavior, durations of jetting process, and printing quality. These findings offer valuable insights into surface charge-induced EHD jetting, advancing the understanding and optimization methods for this useful micro-/nano-manufacturing technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhong完成签到,获得积分20
2秒前
SciGPT应助RAY采纳,获得10
3秒前
坚果完成签到 ,获得积分10
4秒前
个性惜蕊应助11采纳,获得10
5秒前
...完成签到,获得积分10
5秒前
Sweety-完成签到,获得积分10
5秒前
zhaxiao完成签到,获得积分10
6秒前
6秒前
Ava应助你还是要加油采纳,获得10
6秒前
zhong发布了新的文献求助10
7秒前
852应助自信的松鼠采纳,获得10
7秒前
7秒前
orixero应助ponyy采纳,获得10
9秒前
Sweety-发布了新的文献求助10
9秒前
NexusExplorer应助iljm采纳,获得10
10秒前
10秒前
陈昭琼发布了新的文献求助10
11秒前
11秒前
orixero应助lizhiqian2024采纳,获得10
11秒前
五五乐完成签到,获得积分10
11秒前
14秒前
15秒前
16秒前
大聪发布了新的文献求助10
16秒前
16秒前
17秒前
嘻嘻完成签到,获得积分10
17秒前
二十六画生完成签到,获得积分10
18秒前
18秒前
舒适青槐完成签到 ,获得积分10
19秒前
小蘑菇应助jaslek采纳,获得10
20秒前
杜宇发布了新的文献求助10
21秒前
皮皮发布了新的文献求助10
21秒前
22秒前
jngong发布了新的文献求助10
22秒前
22秒前
lizhiqian2024发布了新的文献求助10
23秒前
ysy完成签到,获得积分10
23秒前
Red完成签到,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782959
求助须知:如何正确求助?哪些是违规求助? 3328287
关于积分的说明 10235585
捐赠科研通 3043430
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050