Mechanism of Defect Passivation in Sb2Se3 Solar Cells via Buried Selenium Seed Layer

钝化 材料科学 图层(电子) 机制(生物学) 光电子学 纳米技术 冶金 哲学 认识论
作者
Chuanjun Zhang,Ruihao Jiang,Yonghui Zheng,Yaozhen Li,Zenghua Cai,Chunlan Ma,Yan Cheng,Junhao Chu,Jiahua Tao
出处
期刊:Advanced Energy Materials [Wiley]
被引量:2
标识
DOI:10.1002/aenm.202403352
摘要

Abstract Quasi‐1D antimony selenide (Sb 2 Se 3 ) is known for its stable phase structure and excellent light absorption coefficient, making it a promising material for high‐efficiency light harvesting. However, the (Sb 4 Se 6 ) n ribbons align horizontally, increasing defect interference and limiting vertical carrier transport. Herein, a novel strategy of burying selenium (Se) seed layers to reduce lattice mismatch at the heterojunction interface, promote crystal orientation, mitigate deep donor defects, increase P‐type carrier concentration, and purify the PN junction, is proposed. Admittance spectroscopy reveals that Sb 2 Se 3 solar cells with Se seed layers have higher activation energies for defect states and significantly lower defect densities (1.2 × 10 14 , 2.7 × 10 14 , and 1.3 × 10 15 cm −3 for D1, D2, and D3) compared to an order of magnitude higher densities in Sb 2 Se 3 solar cells without a Se seed layer. First‐principles calculations support these findings, showing that Se seed layers create a Se‐rich environment, reducing selenium vacancies ( V Se ), antimony on selenium sites ( Sb Se ), and interface defects. This dual passivation mechanism suppresses defect formation and activation, increasing carrier concentration and open‐circuit voltage ( V OC ). Ultimately, employing this novel method, a V OC of 498.3 mV and an efficiency of 8.42%, the highest performance reported for Sb 2 Se 3 solar cells prepared via vapor transport deposition (VTD), are achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
lf完成签到,获得积分10
3秒前
wu发布了新的文献求助10
3秒前
4秒前
Cynthia发布了新的文献求助10
5秒前
7秒前
7秒前
orixero应助不要加糖采纳,获得10
7秒前
科研通AI5应助Rachel采纳,获得10
7秒前
8秒前
0128lun发布了新的文献求助10
9秒前
9秒前
研友_nPoWNL完成签到,获得积分10
9秒前
10秒前
10秒前
LIJIngcan发布了新的文献求助10
11秒前
Wu发布了新的文献求助10
11秒前
赵勇发布了新的文献求助20
12秒前
WR完成签到,获得积分10
13秒前
14秒前
九川发布了新的文献求助10
14秒前
多情宛海发布了新的文献求助10
15秒前
研友_nPoWNL发布了新的文献求助10
15秒前
15秒前
炫峰发布了新的文献求助10
18秒前
19秒前
kk完成签到,获得积分10
19秒前
ly发布了新的文献求助10
20秒前
tes完成签到,获得积分10
20秒前
糖果色完成签到 ,获得积分10
22秒前
cuu完成签到,获得积分10
23秒前
立夏完成签到,获得积分10
23秒前
WR发布了新的文献求助10
24秒前
顺利的伊完成签到,获得积分10
24秒前
26秒前
Lijunjie完成签到,获得积分10
28秒前
忐忑的老虎完成签到,获得积分10
28秒前
子车茗应助guoguo采纳,获得20
31秒前
刻苦惜霜完成签到,获得积分10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797784
求助须知:如何正确求助?哪些是违规求助? 3343264
关于积分的说明 10315131
捐赠科研通 3060016
什么是DOI,文献DOI怎么找? 1679212
邀请新用户注册赠送积分活动 806436
科研通“疑难数据库(出版商)”最低求助积分说明 763150