Comparison and application of the far-field identification algorithms for multiple sound sources based on microphone array

计算机科学 鉴定(生物学) 声音(地理) 声学 算法 麦克风阵列 话筒 领域(数学) 语音识别 电信 物理 数学 声压 植物 生物 纯数学
作者
Y.S. Wang,Chao Yang,Hui Guo,Tao Yuan,Yue Wang
出处
期刊:International Journal of Aeroacoustics [SAGE]
卷期号:23 (7-8): 634-656 被引量:1
标识
DOI:10.1177/1475472x241278646
摘要

Based on the conventional beamforming (CBF), some algorithms for far-field sound source identification have been proposed in the past few decades. Typically, the functional beamforming (FBF) and the deconvolution methods, such as CLEAN, CLEAN with source coherence (CLEAN-SC), CLEAN-SC with compressed grids (CLEAN-SC-CG), CLEAN with cross spectral matrix function (CLEAN-CSM), High-resolution CLEAN-SC (HR-CLEAN-SC), are frequently mentioned and their advantages are widely discussed in the previous literatures. To assess their efficacy and suitability in engineering applications, with a focus on spatial resolution, computational efficiency, and dynamic range, a comparative study by locating two types of sound sources is carried out. The first scenario represents the case where the distance between two sound sources is smaller than the Rayleigh limit, while the second scenario represents the situation involving multiple sound sources, such as four or more complex sound sources. The analysis demonstrates that CBF, CLEAN, and CLEAN-SC cannot surpass the Rayleigh limit. However, FBF, CLEAN-SC-CG, CLEAN-CSM, and HR-CLEAN-SC have the potential to overcome it. In FBF, the grid mismatch results in a compromise between its dynamic range and source strength estimation. Meanwhile, HR-CLEAN-SC requires prior knowledge of the number of sound sources, which is challenging in applications. Because of superiority in the fundamental acoustic image and searching strategy, CLEAN-CSM and CLEAN-SC-CG exhibits superior features compared to the others. By compressing the number of grids, the CLEAN-SC-CG can improve the computational efficiency up to at least 46%. By constructing the cross spectral matrix function related to the real source, CLEAN-CSM uses the power function to simultaneously enhance the spatial resolution, dynamic range and source strength estimation. The conclusions are further validated through sound-source identification experiments involving two loudspeakers and an engine. The findings presented in this paper serve to guide the selection of suitable approaches for multi-sound source identification in engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XF发布了新的文献求助10
刚刚
Lee发布了新的文献求助10
刚刚
韶华发布了新的文献求助10
刚刚
琉璃琨琨完成签到 ,获得积分10
刚刚
包容若风完成签到,获得积分10
1秒前
领导范儿应助ngoc777采纳,获得10
1秒前
2秒前
李健的小迷弟应助ZlkaDD采纳,获得10
2秒前
若尘应助Yosiya采纳,获得10
2秒前
科目三应助小九采纳,获得10
2秒前
2秒前
Owen应助哈ha采纳,获得10
2秒前
2秒前
李健应助bean采纳,获得10
3秒前
阔达宝莹发布了新的文献求助10
3秒前
4秒前
4秒前
kong发布了新的文献求助10
5秒前
涵泽发布了新的文献求助10
5秒前
5秒前
6秒前
xana发布了新的文献求助10
6秒前
6秒前
ASSFree发布了新的文献求助10
6秒前
机智绝悟发布了新的文献求助10
7秒前
苏苏应助波妞采纳,获得10
7秒前
无花果应助谢某某102097采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
海绵宝宝发布了新的文献求助10
9秒前
9秒前
韶华完成签到,获得积分10
11秒前
zcx发布了新的文献求助10
13秒前
研友_VZG7GZ应助栗树采纳,获得30
13秒前
15秒前
15秒前
zsy发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514198
求助须知:如何正确求助?哪些是违规求助? 4608120
关于积分的说明 14508732
捐赠科研通 4543952
什么是DOI,文献DOI怎么找? 2489834
邀请新用户注册赠送积分活动 1471765
关于科研通互助平台的介绍 1443710