清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy

轮廓 医学 豪斯多夫距离 分割 Sørensen–骰子系数 卷积神经网络 放射治疗 人工智能 磁共振成像 深度学习 放射科 核医学 计算机科学 图像分割 计算机图形学(图像)
作者
M.H.F. Savenije,Matteo Maspero,G.G. Sikkes,Jochem R.N. van der Voort van Zyp,A.N.T.J. Kotte,Gijsbert H. Bol,Cornelis A. T. van den Berg
出处
期刊:Radiation Oncology [BioMed Central]
卷期号:15 (1) 被引量:93
标识
DOI:10.1186/s13014-020-01528-0
摘要

Abstract Background Structure delineation is a necessary, yet time-consuming manual procedure in radiotherapy. Recently, convolutional neural networks have been proposed to speed-up and automatise this procedure, obtaining promising results. With the advent of magnetic resonance imaging (MRI)-guided radiotherapy, MR-based segmentation is becoming increasingly relevant. However, the majority of the studies investigated automatic contouring based on computed tomography (CT). Purpose In this study, we investigate the feasibility of clinical use of deep learning-based automatic OARs delineation on MRI. Materials and methods We included 150 patients diagnosed with prostate cancer who underwent MR-only radiotherapy. A three-dimensional (3D) T1-weighted dual spoiled gradient-recalled echo sequence was acquired with 3T MRI for the generation of the synthetic-CT. The first 48 patients were included in a feasibility study training two 3D convolutional networks called DeepMedic and dense V-net (dV-net) to segment bladder, rectum and femurs. A research version of an atlas-based software was considered for comparison. Dice similarity coefficient, 95% Hausdorff distances (HD 95 ), and mean distances were calculated against clinical delineations. For eight patients, an expert RTT scored the quality of the contouring for all the three methods. A choice among the three approaches was made, and the chosen approach was retrained on 97 patients and implemented for automatic use in the clinical workflow. For the successive 53 patients, Dice, HD 95 and mean distances were calculated against the clinically used delineations. Results DeepMedic, dV-net and the atlas-based software generated contours in 60 s, 4 s and 10-15 min, respectively. Performances were higher for both the networks compared to the atlas-based software. The qualitative analysis demonstrated that delineation from DeepMedic required fewer adaptations, followed by dV-net and the atlas-based software. DeepMedic was clinically implemented. After retraining DeepMedic and testing on the successive patients, the performances slightly improved. Conclusion High conformality for OARs delineation was achieved with two in-house trained networks, obtaining a significant speed-up of the delineation procedure. Comparison of different approaches has been performed leading to the succesful adoption of one of the neural networks, DeepMedic, in the clinical workflow. DeepMedic maintained in a clinical setting the accuracy obtained in the feasibility study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Krim完成签到 ,获得积分10
1秒前
ztayx完成签到 ,获得积分10
4秒前
12秒前
绿色心情完成签到 ,获得积分10
19秒前
21秒前
领导范儿应助xyrehab采纳,获得10
48秒前
58秒前
热心市民小红花应助紫熊采纳,获得10
1分钟前
xyrehab给xyrehab的求助进行了留言
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
捉迷藏给尙光的求助进行了留言
2分钟前
2分钟前
紫熊完成签到,获得积分10
3分钟前
方白秋完成签到,获得积分10
3分钟前
3分钟前
xyrehab发布了新的文献求助10
3分钟前
科研通AI5应助甜味拾荒者采纳,获得10
3分钟前
3分钟前
3分钟前
河豚不擦鞋完成签到 ,获得积分10
3分钟前
3分钟前
完美世界应助ivyjianjie采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
ivyjianjie发布了新的文献求助10
4分钟前
CipherSage应助激情的蜗牛采纳,获得10
4分钟前
4分钟前
woxinyouyou完成签到,获得积分0
4分钟前
5分钟前
5分钟前
彭于晏应助大方的自行车采纳,获得10
5分钟前
ivyjianjie完成签到,获得积分10
5分钟前
Skywings完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061089
求助须知:如何正确求助?哪些是违规求助? 3599631
关于积分的说明 11432233
捐赠科研通 3323574
什么是DOI,文献DOI怎么找? 1827365
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818719