A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging

医学 磁共振成像 垂体腺瘤 支持向量机 无线电技术 免疫组织化学 人工智能 特征(语言学) 朴素贝叶斯分类器 放射科 腺瘤 病理 计算机科学 语言学 哲学
作者
Aijun Peng,Huming Dai,Haihan Duan,YaXing Chen,Jianhan Huang,Liangxue Zhou,Liangyin Chen
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:125: 108892-108892 被引量:45
标识
DOI:10.1016/j.ejrad.2020.108892
摘要

Abstract Purpose The type of pituitary adenoma (PA) cannot be clearly recognized with preoperative magnetic resonance imaging (MRI) but can be classified with immunohistochemical staining after surgery. In this study, a model to precisely immunohistochemically classify the PA subtypes by radiomic features based on preoperative MR images was developed. Methods Two hundred thirty-five pathologically diagnosed PAs, including t-box pituitary transcription factor (Tpit) family tumors (n = 55), pituitary transcription factor 1 (Pit-1) family tumors (n = 110), and steroidogenic factor 1 (SF-1) family tumors (n = 70), were retrospectively studied. T1-weighted, T2-weighted and contrast-enhanced T1-weighted images were obtained from all patients. Through imaging acquisition, feature extraction and radiomic data processing, 18 radiomic features were used to train support vector machine (SVM), k-nearest neighbors (KNN) and Naive Bayes (NBs) models. Ten-fold cross-validation was applied to evaluate the performance of these models. Results The SVM model showed high performance (balanced accuracy 0.89, AUC 0.9549) whereas the KNN (balanced accuracy 0.83, AUC 0.9266) and NBs (balanced accuracy 0.80, AUC 0.9324) models displayed low performance based on the T2-weighted images. The performance of the T2-weighted images was better than that of the other two MR sequences. Additionally, significant sensitivity (P = 0.031) and specificity (P = 0.012) differences were observed when classifying the PA subtypes by T2-weighted images. Conclusions The SVM model was superior to the KNN and NBs models and can potentially precisely immunohistochemically classify PA subtypes with an MR-based radiomic analysis. The developed model exhibited good performance using T2-weighted images and might offer potential guidance to neurosurgeons in clinical decision-making before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
afar完成签到 ,获得积分10
1秒前
3秒前
jenny完成签到,获得积分10
6秒前
王婧jjj发布了新的文献求助10
7秒前
乐观红牛发布了新的文献求助10
7秒前
TN完成签到 ,获得积分10
8秒前
顾矜应助俭朴夜香采纳,获得10
15秒前
16秒前
kytzh完成签到,获得积分10
17秒前
彭于晏应助Lqiang采纳,获得10
18秒前
19秒前
英俊的铭应助103921wjk采纳,获得10
19秒前
20秒前
20秒前
科研通AI5应助刀客特幽采纳,获得10
21秒前
pluto应助博士采纳,获得10
22秒前
归尘发布了新的文献求助10
24秒前
123457关注了科研通微信公众号
24秒前
儒雅的焦完成签到 ,获得积分10
24秒前
24秒前
24秒前
太空工程师完成签到,获得积分10
25秒前
Nia发布了新的文献求助10
27秒前
努力成为科研大佬完成签到,获得积分10
28秒前
103921wjk发布了新的文献求助10
29秒前
里海鱼完成签到,获得积分10
30秒前
30秒前
szh123完成签到 ,获得积分10
34秒前
小白应助kyJYbs采纳,获得20
35秒前
NexusExplorer应助yue采纳,获得10
36秒前
37秒前
40秒前
科研通AI5应助刀客特幽采纳,获得10
41秒前
41秒前
41秒前
平常剑鬼发布了新的文献求助10
43秒前
LQX2141完成签到 ,获得积分10
45秒前
echooooo发布了新的文献求助10
46秒前
Lqiang发布了新的文献求助10
47秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648