Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer

结直肠癌 比例危险模型 人工智能 肿瘤科 医学 内科学 队列 基质 机器学习 癌症 计算机科学 免疫组织化学
作者
Ke Zhao,Zhenhui Li,Su Yao,Yingyi Wang,Xiaomei Wu,Zeyan Xu,Lin Wu,Yanqi Huang,Changhong Liang,Zaiyi Liu
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:61: 103054-103054 被引量:108
标识
DOI:10.1016/j.ebiom.2020.103054
摘要

BackgroundAn artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eosin (HE) stained whole-slide images (WSI) and further investigated its prognostic validity for patient stratification.MethodsWe trained a convolutional neural network (CNN) model using transfer learning, with its nine-class tissue classification performance evaluated in two independent test sets. Patch-level segmentation on WSI HE slides was performed using the model, with TSR subsequently derived. A discovery (N=499) and validation cohort (N=315) were used to evaluate the prognostic value of TSR for overall survival (OS).FindingsThe CNN-quantified TSR was a prognostic factor, independently of other clinicopathologic characteristics, with stroma-high associated with reduced OS in the discovery (HR 1.72, 95% CI 1.24-2.37, P=0.001) and validation cohort (2.08, 1.26-3.42, 0.004). Integrating TSR into a Cox model with other risk factors showed improved prognostic capability.InterpretationWe developed a deep learning model to quantify TSR based on histologic WSI of CRC and demonstrated its prognostic validity for patient stratification for OS in two independent CRC patient cohorts. This fully automatic approach allows for the objective and standardised application while reducing pathologists' workload. Thus, it can potentially be of significant aid in clinical prognosis prediction and decision-making.FundingNational Key Research and Development Program of China, National Science Fund for Distinguished Young Scholar, and National Science Foundation for Young Scientists of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
纯真皮卡丘完成签到 ,获得积分10
2秒前
高大凌寒发布了新的文献求助200
3秒前
科研通AI5应助jzyy采纳,获得10
3秒前
3秒前
细腻的听兰完成签到,获得积分10
3秒前
天道酬勤发布了新的文献求助10
4秒前
打打应助嗯哼采纳,获得30
4秒前
日月同辉完成签到,获得积分10
5秒前
5秒前
22222发布了新的文献求助10
5秒前
CodeCraft应助我其实还好采纳,获得10
8秒前
Ava应助韋晴采纳,获得10
8秒前
Estella发布了新的文献求助50
8秒前
大傻春完成签到 ,获得积分10
8秒前
科研通AI5应助Mercury采纳,获得10
9秒前
10秒前
高兴吐司发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
黄huang完成签到,获得积分10
13秒前
热情飞荷完成签到,获得积分10
14秒前
14秒前
15秒前
lydy1993发布了新的文献求助150
15秒前
15秒前
15秒前
WZ发布了新的文献求助10
16秒前
惊蛰完成签到,获得积分10
16秒前
zcg完成签到 ,获得积分10
18秒前
乖拉发布了新的文献求助10
18秒前
大个应助777777采纳,获得10
18秒前
18秒前
19秒前
天道酬勤完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783737
求助须知:如何正确求助?哪些是违规求助? 3328914
关于积分的说明 10239295
捐赠科研通 3044388
什么是DOI,文献DOI怎么找? 1670975
邀请新用户注册赠送积分活动 799997
科研通“疑难数据库(出版商)”最低求助积分说明 759172