Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer

结直肠癌 比例危险模型 人工智能 肿瘤科 医学 内科学 队列 基质 机器学习 癌症 计算机科学 免疫组织化学
作者
Ke Zhao,Zhenhui Li,Su Yao,Yingyi Wang,Xiaomei Wu,Zeyan Xu,Lin Wu,Yanqi Huang,Changhong Liang,Zaiyi Liu
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:61: 103054-103054 被引量:108
标识
DOI:10.1016/j.ebiom.2020.103054
摘要

BackgroundAn artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eosin (HE) stained whole-slide images (WSI) and further investigated its prognostic validity for patient stratification.MethodsWe trained a convolutional neural network (CNN) model using transfer learning, with its nine-class tissue classification performance evaluated in two independent test sets. Patch-level segmentation on WSI HE slides was performed using the model, with TSR subsequently derived. A discovery (N=499) and validation cohort (N=315) were used to evaluate the prognostic value of TSR for overall survival (OS).FindingsThe CNN-quantified TSR was a prognostic factor, independently of other clinicopathologic characteristics, with stroma-high associated with reduced OS in the discovery (HR 1.72, 95% CI 1.24-2.37, P=0.001) and validation cohort (2.08, 1.26-3.42, 0.004). Integrating TSR into a Cox model with other risk factors showed improved prognostic capability.InterpretationWe developed a deep learning model to quantify TSR based on histologic WSI of CRC and demonstrated its prognostic validity for patient stratification for OS in two independent CRC patient cohorts. This fully automatic approach allows for the objective and standardised application while reducing pathologists' workload. Thus, it can potentially be of significant aid in clinical prognosis prediction and decision-making.FundingNational Key Research and Development Program of China, National Science Fund for Distinguished Young Scholar, and National Science Foundation for Young Scientists of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
畅快芝麻发布了新的文献求助10
刚刚
1秒前
forgood8187发布了新的文献求助80
1秒前
科研通AI6应助可夫司机采纳,获得50
1秒前
慕容女士完成签到,获得积分10
1秒前
didi发布了新的文献求助20
1秒前
1秒前
2秒前
奋斗奋斗再奋斗完成签到,获得积分10
2秒前
冲冲冲发布了新的文献求助10
2秒前
维尼发布了新的文献求助10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
doudou完成签到,获得积分10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
菜鸡L应助科研通管家采纳,获得50
3秒前
泥泥完成签到 ,获得积分10
3秒前
小白菜发布了新的文献求助10
3秒前
阿满应助科研通管家采纳,获得30
3秒前
NexusExplorer应助隐形静芙采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
disjustar应助科研通管家采纳,获得20
5秒前
wangyue完成签到 ,获得积分10
5秒前
5秒前
典雅天薇发布了新的文献求助10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
111应助亦74采纳,获得20
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4891724
求助须知:如何正确求助?哪些是违规求助? 4175023
关于积分的说明 12958802
捐赠科研通 3937360
什么是DOI,文献DOI怎么找? 2160157
邀请新用户注册赠送积分活动 1178407
关于科研通互助平台的介绍 1084044