Sequence to Sequence Learning with Neural Networks

计算机科学 人工智能 短语 判决 序列(生物学) 任务(项目管理) 自然语言处理 词(群论) 循环神经网络 语音识别 机器翻译 深度学习 人工神经网络 词汇 数学 哲学 几何学 生物 经济 管理 遗传学 语言学
作者
Ilya Sutskever,Oriol Vinyals,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:13744
标识
DOI:10.48550/arxiv.1409.3215
摘要

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maigret完成签到,获得积分10
1秒前
2秒前
3秒前
jnuszjz发布了新的文献求助10
3秒前
lalala完成签到,获得积分10
4秒前
4秒前
7秒前
7秒前
8秒前
奋斗绿旋完成签到,获得积分10
8秒前
嘻嘻发布了新的文献求助10
8秒前
英姑应助李凤凤采纳,获得10
9秒前
热心的十二完成签到 ,获得积分10
10秒前
Young发布了新的文献求助10
10秒前
英俊的铭应助OSASACB采纳,获得10
10秒前
11秒前
SciGPT应助糟糕的妙海采纳,获得10
11秒前
yy76完成签到,获得积分10
12秒前
十八发布了新的文献求助10
12秒前
liman发布了新的文献求助10
12秒前
苑阿宇发布了新的文献求助20
13秒前
super完成签到,获得积分10
14秒前
爱老婆发布了新的文献求助10
14秒前
慕青应助Lu_ckilly采纳,获得10
14秒前
zxtwins发布了新的文献求助10
15秒前
15秒前
16秒前
ding应助伶俐惜萱采纳,获得10
16秒前
16秒前
Peng完成签到,获得积分10
17秒前
18秒前
18秒前
Jack完成签到,获得积分10
19秒前
20秒前
那年春发布了新的文献求助10
20秒前
务实青筠发布了新的文献求助10
21秒前
风趣觅荷发布了新的文献求助10
21秒前
21秒前
21秒前
畅快的刚完成签到,获得积分10
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345103
关于积分的说明 10323728
捐赠科研通 3061700
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462