清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty

单变量 灵敏度(控制系统) 概率逻辑 差异(会计) 多元统计 不确定度分析 计算机科学 不确定度量化 数学优化 概率设计 工程设计过程 数学 机器学习 工程类 模拟 人工智能 会计 业务 机械工程 电子工程
作者
Wei Chen,Ruichen Jin,Agus Sudjianto
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:127 (5): 875-886 被引量:205
标识
DOI:10.1115/1.1904642
摘要

Abstract The importance of sensitivity analysis in engineering design cannot be over-emphasized. In design under uncertainty, sensitivity analysis is performed with respect to the probabilistic characteristics. Global sensitivity analysis (GSA), in particular, is used to study the impact of variations in input variables on the variation of a model output. One of the most challenging issues for GSA is the intensive computational demand for assessing the impact of probabilistic variations. Existing variance-based GSA methods are developed for general functional relationships but require a large number of samples. In this work, we develop an efficient and accurate approach to GSA that employs analytic formulations derived from metamodels. The approach is especially applicable to simulation-based design because metamodels are often created to replace expensive simulation programs, and therefore readily available to designers. In this work, we identify the needs of GSA in design under uncertainty, and then develop generalized analytical formulations that can provide GSA for a variety of metamodels commonly used in engineering applications. We show that even though the function forms of these metamodels vary significantly, they all follow the form of multivariate tensor-product basis functions for which the analytical results of univariate integrals can be constructed to calculate the multivariate integrals in GSA. The benefits of our proposed techniques are demonstrated and verified through both illustrative mathematical examples and the robust design for improving vehicle handling performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
迷你的夜天完成签到 ,获得积分10
6秒前
lyj完成签到 ,获得积分10
18秒前
30秒前
36秒前
37秒前
Emma应助冷静的小虾米采纳,获得200
50秒前
1分钟前
Sunny完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Ava应助精明晓刚采纳,获得10
1分钟前
NattyPoe完成签到,获得积分10
1分钟前
小西完成签到 ,获得积分10
1分钟前
2分钟前
蛋卷完成签到 ,获得积分10
2分钟前
烟花应助雪上一枝蒿采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
时舒完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
精明晓刚发布了新的文献求助10
3分钟前
3分钟前
3分钟前
雪上一枝蒿完成签到,获得积分10
3分钟前
3分钟前
3分钟前
HUO发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小熊早就睡啦完成签到,获得积分10
3分钟前
HUO完成签到,获得积分20
4分钟前
亿亿亿亿完成签到,获得积分10
4分钟前
萝卜猪完成签到,获得积分10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128787
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069